Background: Urine culture images collected using bacteriology automation are currently interpreted by technologists during routine standard-of-care workflows. Machine learning may be able to improve the harmonization of and assist with these interpretations.
Methods: A deep learning model, BacterioSight, was developed, trained, and tested on standard BD-Kiestra images of routine blood agar urine cultures from 2 different medical centers.
Results: BacterioSight displayed performance on par with standard-of-care-trained technologist interpretations. BacterioSight accuracy ranged from 97% when compared to standard-of-care (single technologist) and reached 100% when compared to a consensus reached by a group of technologists (gold standard in this study). Variability in image interpretation by trained technologists was identified and annotation "fuzziness" was quantified and found to correlate with reduced confidence in BacterioSight interpretation. Intra-testing (training and testing performed within the same institution) performed well giving Area Under the Curve (AUC) ≥0.98 for negative and positive plates, whereas, cross-testing on images (trained on one institution's images and tested on images from another institution) showed decreased performance with AUC ≥0.90 for negative and positive plates.
Conclusions: Our study provides a roadmap on how BacterioSight or similar deep learning prototypes may be implemented to screen for microbial growth, flag difficult cases for multi-personnel review, or auto-verify a subset of cultures with high confidence. In addition, our results highlight image interpretation variability by trained technologist within an institution and globally across institutions. We propose a model in which deep learning can enhance patient care by identifying inherent sample annotation variability and improving personnel training.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/clinchem/hvab270 | DOI Listing |
PLoS One
January 2025
School of Electronic Information Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, China.
Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding spectrum environment through sensing capabilities, thereby facilitating efficient spectrum utilization without interfering with the normal operation of licensed users. This study aims to enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is developed, utilizing CNN's local feature extraction capability and LSTM's advantage in handling sequential data to optimize sensing accuracy and efficiency.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Information Systems and Cybersecurity, University of Bisha, Bisha, KSA.
Accurate energy demand forecasting is critical for efficient energy management and planning. Recent advancements in computing power and the availability of large datasets have fueled the development of machine learning models. However, selecting the most appropriate features to enhance prediction accuracy and robustness remains a key challenge.
View Article and Find Full Text PDFPLoS One
January 2025
Centro Ricerche Enrico Fermi, Rome, Italy.
The Covid-19 pandemic has sparked renewed attention to the risks of online misinformation, emphasizing its impact on individuals' quality of life through the spread of health-related myths and misconceptions. In this study, we analyze 6 years (2016-2021) of Italian vaccine debate across diverse social media platforms (Facebook, Instagram, Twitter, YouTube), encompassing all major news sources-both questionable and reliable. We first use the symbolic transfer entropy analysis of news production time-series to dynamically determine which category of sources, questionable or reliable, causally drives the agenda on vaccines.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Biological Sciences, US Fish and Wildlife Southwest Regional Office, Albuquerque, New Mexico, United States of America.
There is growing interest in using deep learning models to automate wildlife detection in aerial imaging surveys to increase efficiency, but human-generated annotations remain necessary for model training. However, even skilled observers may diverge in interpreting aerial imagery of complex environments, which may result in downstream instability of models. In this study, we present a framework for assessing annotation reliability by calculating agreement metrics for individual observers against an aggregated set of annotations generated by clustering multiple observers' observations and selecting the mode classification.
View Article and Find Full Text PDFNetwork
January 2025
Computer Science and Engineering, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India.
Skin cancer is one of the most prevalent and harmful forms of cancer, with early detection being crucial for successful treatment outcomes. However, current skin cancer detection methods often suffer from limitations such as reliance on manual inspection by clinicians, inconsistency in diagnostic accuracy, and a lack of personalized recommendations based on patient-specific data. In our work, we presented a Personalized Recommendation System to handle Skin Cancer at an early stage based on Hybrid Model (PRSSCHM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!