Developing a novel antibiotics-free antibacterial strategy is essential for minimizing bacterial resistance. Materials that not only kill bacteria but also promote tissue healing are especially challenging to achieve. Inspired by chemical conversion processes in living organisms, we develop a piezoelectrically active antibacterial device that converts ambient O and HO to ROS by piezocatalytic processes. The device is achieved by mounting nanoscopic polypyrrole/carbon nanotube catalyst multilayers onto piezoelectric-dielectric films. Under stimuli by a hand-held massage device, the sterilizing rates for and reach 84.11% and 94.85% after 10 minutes of operation, respectively. The antibacterial substrate at the same time preserves and releases drugs and presents negligible cytotoxicity. Animal experiments demonstrate that daily treatment for 10 minutes using the device effectively accelerates the healing of infected wounds on the backs of mice, promoting hair follicle generation and collagen deposition. We believe that this report provides a novel design approach for antibacterial strategies in medical treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr07386aDOI Listing

Publication Analysis

Top Keywords

piezocatalytic processes
8
antibacterial
5
healing promoting
4
promoting wound
4
wound dressing
4
dressing tailor-made
4
tailor-made antibacterial
4
antibacterial potency
4
potency employing
4
employing piezocatalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!