Many SARS-CoV-2 variants have mutations at key sites targeted by antibodies. However, it is unknown if antibodies elicited by infection with these variants target the same or different regions of the viral spike as antibodies elicited by earlier viral isolates. Here we compare the specificities of polyclonal antibodies produced by humans infected with early 2020 isolates versus the B.1.351 variant of concern (also known as Beta or 20H/501Y.V2), which contains mutations in multiple key spike epitopes. The serum neutralizing activity of antibodies elicited by infection with both early 2020 viruses and B.1.351 is heavily focused on the spike receptor-binding domain (RBD). However, within the RBD, B.1.351-elicited antibodies are more focused on the "class 3" epitope spanning sites 443 to 452, and neutralization by these antibodies is notably less affected by mutations at residue 484. Our results show that SARS-CoV-2 variants can elicit polyclonal antibodies with different immunodominance hierarchies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8856557PMC
http://dx.doi.org/10.1371/journal.ppat.1010248DOI Listing

Publication Analysis

Top Keywords

antibodies elicited
12
sars-cov-2 variants
8
antibodies
8
elicited infection
8
polyclonal antibodies
8
early 2020
8
sars-cov-2 variant
4
variant elicits
4
elicits antibody
4
antibody response
4

Similar Publications

A VZV-gE subunit vaccine decorated with mPLA elicits protective cellular immmune responses against varicella-zoster virus.

Int Immunopharmacol

January 2025

Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China. Electronic address:

Herpes zoster is an acute infectious skin disease caused by the reactivation of latent varicella-zoster virus, vaccination, such as subunit vaccine with good safety, can effectively prevent shingles through increasing immunity of the body. However, protein antigens are prone to degradation and inactivation, which alone is generally not sufficient to induce potent immune effect. In this study, the liposomal vaccine platform modified with mPLA (TLR4 agonist) was developed to improve the immunogenicity of glycoprotein E (VZV-gE) derived from herpes zoster virus.

View Article and Find Full Text PDF

Expanding the Potential of Circular RNA (CircRNA) Vaccines: A Promising Therapeutic Approach.

Int J Mol Sci

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.

In recent years, circular RNAs (circRNAs) have garnered significant attention due to their unique structure and function, positioning them as promising candidates for next-generation vaccines. The circRNA vaccine, as an RNA vaccine, offers significant advantages in preventing infectious diseases by serving as a vector for protein expression through non-canonical translation. Notably, circRNA vaccines have demonstrated enduring antigenic expression and generate a larger percentage of neutralizing antibodies compared to mRNA vaccines administered at the same dosage.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) from can elicit immune responses, positioning them as promising acellular vaccine candidates. We characterized EVs from an avirulent cell wall mutant (Δ) and evaluated their protective potential against invasive candidiasis. EVs from the yeast (YEVs) and hyphal (HEVs) forms of the SC5314 wild-type strain were also tested, yielding high survival rates with SC5314 YEV (91%) and YEV immunization (64%).

View Article and Find Full Text PDF

Paraneoplastic cerebellar degeneration (PCD) is a rapidly progressive, immune-mediated syndrome characterized by the degeneration of Purkinje cells, often associated with the presence of antibodies targeting intracellular antigens within these cells. These autoantibodies are implicated in the induction of cytotoxicity, leading to Purkinje cell death, as demonstrated in in vitro models. However, the precise roles of antibodies and T lymphocytes in mediating neuronal injury remain a subject of ongoing research, with T cells appearing to be the main effectors of cerebellar injury.

View Article and Find Full Text PDF

Oncolytic vaccinia virus armed with anti-CD47 nanobody elicit potent antitumor effects on multiple tumor models via enhancing innate and adoptive immunity.

J Immunother Cancer

December 2024

Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China

Objective: Targeting CD47 for cancer immunotherapy has been studied in many clinical trials for the treatment of patients with advanced tumors. However, this therapeutic approach is often hampered by on-target side effects, physical barriers, and immunosuppressive tumor microenvironment (TME).

Methods: To improve therapeutic efficacy while minimizing toxicities, we engineered an oncolytic vaccinia virus (OVV) encoding an anti-CD47 nanobody (OVV-αCD47nb).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!