In this work, the accuracy of row-column tensor velocity imaging (TVI), i.e., 3-D vector flow imaging (VFI) in 3-D space over time, is quantified on a complex, clinically relevant flow. The quantification is achieved by transferring the flow simulated using computational fluid dynamics (CFD) to a Field II simulation environment, and this allows for a direct comparison between the actual and estimated velocities. The carotid bifurcation flow simulations were performed with a peak inlet velocity of 80 cm/s, nonrigid vessel walls, and a flow cycle duration of 1.2 s. The flow was simulated from two observation angles, and it was acquired using a 3-MHz 62+62 row-column addressed array (RCA) at a pulse repetition frequency ( f ) of 10 and 20 kHz. The tensor velocities were obtained at a frame rate of 208.3 Hz, at f = 10 kHz , and the results from two velocity estimators were compared. The two estimators were the directional transverse oscillation (TO) cross correlation estimator and the proposed autocorrelation estimator. Linear regression between the actual and estimated velocity components yielded, for the cross correlation estimator, an R value in the range of 0.89-0.91, 0.46-0.77, and 0.91-0.97 for the x -, y -, and z -components, and 0.87-0.89, 0.40-0.83, and 0.91-0.96 when using the autocorrelation estimator. The results demonstrate that an RCA can, with just 62 receive channels, measure complex 3-D flow fields at a high volume rate.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2022.3150106DOI Listing

Publication Analysis

Top Keywords

transverse oscillation
8
tensor velocity
8
velocity imaging
8
computational fluid
8
fluid dynamics
8
carotid bifurcation
8
flow
8
bifurcation flow
8
flow simulated
8
actual estimated
8

Similar Publications

Taylor's swimming sheet near a soft boundary.

Soft Matter

January 2025

Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France.

In 1951, G. I. Taylor modeled swimming microorganisms by hypothesizing an infinite sheet in 2D moving in a viscous medium due to a wave passing through it.

View Article and Find Full Text PDF

Objective: A novel approach to 3-dimensional morphometry of the thoracic aorta was developed by applying centerline analysis based on least-squares plane fitting, and a preliminary study was conducted using computed tomography imaging data.

Methods: We retrospectively compared 3 groups of patients (16 controls without aortic disease, and 16 cases each with acute type B aortic dissection and congenital bicuspid aortic valve). In addition to the standard assessment indices for curvature κ and torsion τ, we conducted coordinate transformation based on the least-squares plane, divided the centerline into 3 representative features (transverse, anterior-posterior, and longitudinal displacements), and analyzed the overall and local displacement in each direction.

View Article and Find Full Text PDF

Transverse mode instability (TMI) significantly limits the power scaling of ytterbium-doped fiber lasers. In this Letter, what we believe to be a novel TMI mitigation strategy is proposed and demonstrated in a bidirectional output fiber laser. On the basis of the continuous wave (CW) pump, integrating a quasi-continuous wave (QCW) pump can effectively improve the TMI threshold of the system.

View Article and Find Full Text PDF

The goal of this article is to identify and understand the fundamental role of spatial symmetries in the emergence of undulatory swimming using an anguilliform robot. Here, the local torque at the joints of the robot is controlled by a chain of oscillators forming a central pattern generator (CPG). By implementing a symmetric CPG with respect to the transverse plane, motor activation waves are inhibited, preventing the emergence of undulatory swimming and resulting in an oscillatory gait.

View Article and Find Full Text PDF

The interface with spin defects in hexagonal boron nitride has recently become a promising platform and has shown great potential in a wide range of quantum technologies. Varieties of spin properties of - defects in hexagonal boron nitride (hBN) have been researched widely and deeply, like their structure and coherent control. However, little is known about the influence of off-axis magnetic fields on the coherence properties of - defects in hBN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!