Virulent non-tuberculous Mycobacteria (NTMs) successfully reside and multiply within the phagosomes of phagocytic cells such as monocytes and macrophages. Macrophages play a very important role in the innate clearance of intracellular pathogens including NTMs. Attenuated subsp. 100 enters macrophages but is incapable of escaping these cells via canonical mycobacteria escape mechanisms. Alternatively, virulent subsp. 104 and subsp. are able to modify macrophages to suit their growth, survival and ultimately escape from macrophages, while non-virulent is readily killed by macrophages. In this study we focused on early infection of macrophages with NTMs to determine the phenotypic response of macrophages, M1 or M2 differentiation, and phosphorylation alterations that can affect cellular response to invading bacteria. Our findings indicate that infection of the macrophage with MAH 100 and favours the development of M1 macrophage, a pro-inflammatory phenotype associated with the killing of intracellular pathogens, while infection of the macrophage with MAH 104 and favoured the development of M2 macrophage, an anti-inflammatory phenotype associated with the healing process. Interference with the host post-translational mechanisms, such as protein phosphorylation, is a key strategy used by many intracellular bacterial pathogens to modulate macrophage phenotype and subvert macrophage function. By comparing protein phosphorylation patterns of infected macrophages, we observed that uptake of both MAH 100 and resulted in MARCKS-related protein phosphorylation, which has been associated with macrophage activation. In contrast, in macrophages infected with MAH 104 and , methionine adenosyltransferase IIβ, an enzyme that catalyses the biosynthesis of S-adenosylmethionine, a methyl donor for DNA methylation. Inhibition of DNA methylation with 5-aza-2 deoxycytidine, significantly impaired the survival of MAH 104 in macrophages. Our findings suggest that the virulent MAH 104 and enhance its survival in the macrophage possibly through interference with the epigenome responses.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.001133DOI Listing

Publication Analysis

Top Keywords

mah 104
16
macrophages
12
protein phosphorylation
12
intracellular pathogens
8
macrophage
8
infection macrophage
8
macrophage mah
8
mah 100
8
development macrophage
8
phenotype associated
8

Similar Publications

Beneficial Effects of FEC on an In-Situ Polymerized Deep Eutectic Electrolyte for Solid-State Batteries.

ACS Appl Mater Interfaces

January 2025

Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.

Eutectic-based polymer electrolytes have emerged as promising solid electrolytes because of their ionic liquid-like properties, while modifications are essential to further increase their ionic conductivity at room temperature and solve their compatibility with lithium anode. In this work, an in situ polymerized composite electrolyte is modified by the addition of fluoroethylene carbonate (FEC) whose beneficial effect is systematically investigated in different contents. Poly(ethylene glycol) diacrylate (PEGDA), deep eutectic solvent (LiTFSI:-methylacetamide = 1:3), and alumina fiber work as the monomer, solvent, and three-dimensional skeleton, respectively.

View Article and Find Full Text PDF

The NASICON-type NaV(PO) (NVP) is recognized as a potential cathode material for Na-ion batteries (SIBs). Nevertheless, its inherent small electronic conductivity induces limited cycling stability and rate performance. Carbon coating, particularly N-doped carbon, has been identified as an effective strategy to address these challenges.

View Article and Find Full Text PDF

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

Nanocellulose-reinforced nanofiber composite poly(aryl ether ketone) polymer electrolyte for advanced lithium batteries.

Int J Biol Macromol

January 2025

Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China; College of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130024, PR China. Electronic address:

Solid polymer batteries (SPEs) are highly desirable for energy storage because of the urgent need for higher energy density and safer lithium ion batteries (LIBs). In this work, the single-ion lithium salt PAEK-LiCPSI was synthesized by grafting 3-chloropropanesulfonyl trifluoromethanesulimide lithium (LiCPSI) onto poly(aryl ether ketone) (PAEK). Nanocellulose (NCC), PAEK-LiCPSI, and poly(vinylidene fluoride) (PVDF-HFP) were compounded to obtain NCC reinforced high-performance nanofiber composite polymer electrolytes (NCC/PAEK/PVDF) through electrospinning, which presented tensile strength of 15.

View Article and Find Full Text PDF
Article Synopsis
  • PVDF is a promising material for solid polymer electrolytes because of its good thermal stability and wide electrochemical range, but it faces issues with poor ionic conductivity due to the formation of a harmful alkaline layer on garnet fillers.
  • LiOH on the surface of these fillers contributes to the breakdown of PVDF chains, leading to unwanted chemical bonds; this can be mitigated by treating the fillers with acetic acid to create alkali-free garnets.
  • The modified PVDF electrolyte shows significantly improved ionic conductivity and a wider electrochemical window, resulting in better performance for solid-state lithium batteries, evidenced by higher discharge capacity and cycle stability.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!