Hybrid Janus Membrane with Dual-Asymmetry Integration of Wettability and Conductivity for Ultra-Low-Volume Sweat Sensing.

ACS Appl Mater Interfaces

Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Published: February 2022

Highly sensitive and selective analysis of sweat at ultra-low sample volume remains a major challenge in the field of biosensing. Manipulation of small volumes of liquid for efficient sampling is essential to address this challenge. A hybrid Janus membrane with dual-asymmetry integration of wettability and conductivity is developed for regulated micro-volume liquid transport in wearable sweat biosensing. Unlike the uncontrollable liquid diffusion in a conventional porous membrane, the asymmetric wettability of porous Janus membrane leads to unique unidirectional liquid transport with high breakthrough pressure (1737.66 Pa) and fast self-pumping rate (35.94 μL/min) for micro-volume liquid sampling. The asymmetric conductive layer shows excellent flexible conductivity, anti-interference of friction, and efficient electrochemical interface due to the in situ generation of gold nanoparticles on one side of the membrane. The fabricated Pt-enzyme electrodes on the membrane promises effective testing range, great selectivity, and high sensitivity and accuracy (correlation efficiency, glucose: = 0.999, lactate: = 0.997), enabling ultra-low volume (∼0.15 μL) real time measurements on the skin surface. The innovative Janus membrane with unidirectional, self-pumping, and anti-interference performance provides a new strategy for miniaturized wearable microfluidic sweat electrochemical biosensor preparation in athletic performance evaluation, health monitoring, disease diagnosis, intelligent medicine, and so forth.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c16820DOI Listing

Publication Analysis

Top Keywords

janus membrane
16
hybrid janus
8
membrane dual-asymmetry
8
dual-asymmetry integration
8
integration wettability
8
wettability conductivity
8
micro-volume liquid
8
liquid transport
8
membrane
7
liquid
5

Similar Publications

Thermoplastic polyurethane (TPU) fabrics often possess good mechanical, waterproofing, and breathability properties. However, the resistance of TPU to excessive ultraviolet (UV) irradiation is poor and often does not meet the UV resistance requirements of fabrics. Electrospun nanofibers with a side-by-side structure can combine the advantages of different materials.

View Article and Find Full Text PDF

Arachidonate 15-lipoxygenase type B (ALOX15B) peroxidises polyunsaturated fatty acids to their corresponding fatty acid hydroperoxides, which are subsequently reduced into hydroxy-fatty acids. A dysregulated abundance of these biological lipid mediators has been reported in the skin and blood of psoriatic compared to healthy individuals. RNAscope and immunohistochemistry revealed increased ALOX15B expression in lesional psoriasis samples.

View Article and Find Full Text PDF

miR-224-5p Suppresses Non-Small Cell Lung Cancer via IL6ST-Mediated Regulation of the JAK2/STAT3 Pathway.

Thorac Cancer

January 2025

Department of Thoracic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.

Background: Our study aimed to explore the specific functions and potential mechanisms of miR-224-5p in non-small cell lung cancer (NSCLC).

Methods: We first analyzed the expression of miR-224-5p in NSCLC patients and cell lines through the GEO database and qRT-PCR analysis. Then, we used MTT assays, wound healing assays, Transwell assays, and western blotting to evaluate the effects of miR-224-5p on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF

One-step fabrication of ultrathin porous Janus membrane within seconds for waterproof and breathable electronic skin.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China. Electronic address:

It remains a challenge for a simple and scalable method to fabricate ultrathin porous Janus membranes for stretchable on-skin electronics. Here, we propose a one-step droplet spreading phase separation strategy to prepare an ultrathin and easily collected Janus thermoplastic polyurethane (TPU) membrane within seconds. The metal-ion solvation structure mitigated migration kinetics to delay TPU solution demixing, promoting the further penetration of the coagulating solvent.

View Article and Find Full Text PDF

Endothelial STING-JAK1 interaction promotes tumor vasculature normalization and antitumor immunity.

J Clin Invest

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Stimulator of interferon genes (STING) agonists have been developed and tested in clinical trials for their antitumor activity. However, the specific cell population(s) responsible for such STING activation-induced antitumor immunity have not been completely understood. In this study, we demonstrated that endothelial STING expression was critical for STING agonist-induced antitumor activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!