Objective: This study aims to compare an electrocardiogram (ECG)-gated four-dimensional (4D) phase-contrast (PC) magnetic resonance imaging (MRI) technique and computational fluid dynamics (CFD) using variables controlled in a laboratory environment to minimize bias factors.

Materials And Methods: Data from 4D PC-MRI were compared with computational fluid dynamics using steady and pulsatile flows at various inlet velocities. Anatomically realistic models for a normal aorta, a penetrating atherosclerotic ulcer, and an abdominal aortic aneurysm were constructed using a three-dimensional printer.

Results: For the normal aorta model, the errors in the peak and the average velocities were within 5%. The peak velocities of the penetrating atherosclerotic ulcer and the abdominal aortic aneurysm models displayed a more extensive range of differences because of the high-speed and vortical fluid flows generated by the shape of the blood vessel. However, the average velocities revealed only relatively minor differences.

Conclusions: This study compared the characteristics of PC-MRI and CFD through a phantom study that only included controllable experimental parameters. Based on these results, 4D PC-MRI and CFD are powerful tools for analyzing blood flow patterns in vivo. However, there is room for future developments to improve velocity measurement accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10334-021-00984-3DOI Listing

Publication Analysis

Top Keywords

computational fluid
12
fluid dynamics
12
four-dimensional phase-contrast
8
phase-contrast magnetic
8
magnetic resonance
8
normal aorta
8
penetrating atherosclerotic
8
atherosclerotic ulcer
8
ulcer abdominal
8
abdominal aortic
8

Similar Publications

Point-of-care ultrasound in the diagnosis of hepatic gas gangrene.

J Ultrasound

January 2025

Argentinian Critical Care Ultrasonography Association (ASARUC), Buenos Aires, Argentina.

Hepatic gas gangrene (HGG) is a rare but life-threatening condition typically caused by anaerobic bacteria such as Clostridium perfringens, though Gram-negative bacteria like Escherichia coli and Klebsiella species have also been implicated. Traditionally diagnosed via computed tomography (CT), point-of-care ultrasound (POCUS) has emerged as a valuable tool in critical care settings for its non-invasive, bedside utility. We report the case of a 51-year-old female with choledochal syndrome secondary to cholangiocarcinoma who developed HGG following left extended hepatectomy and biliary reconstruction.

View Article and Find Full Text PDF

This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.

View Article and Find Full Text PDF

Novel noninvasive prediction for pulse pressure variation: a machine learning-based model.

Br J Anaesth

January 2025

Department of Anaesthesia, Rabin Medical Centre, Beilinson Hospital, Petach Tikva, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel. Electronic address:

View Article and Find Full Text PDF

Diagnostic performance and clinical outcomes of computed tomography colonography in a sick inpatient population.

Clin Imaging

January 2025

NYU Langone Health, Department of Radiology, 660 1st Ave, New York, NY 10016, United States.

Purpose: Though prior studies have proven CTC's efficacy in outpatients, its utility in the inpatient setting has not been studied. We evaluated the efficacy of a modified CTC protocol in the inpatient setting, primarily for patients awaiting organ transplantation.

Methods: This retrospective study compared a group of inpatient CTCs from 2019 to 2021 and a randomly selected, age-matched 2:1 control group of outpatient CTCs.

View Article and Find Full Text PDF

Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach.

Syst Biol Reprod Med

December 2025

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!