Understanding the magnetic anisotropy for linear sandwich [Er(COT)]-based compounds: a theoretical investigation.

Dalton Trans

Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.

Published: February 2022

A series of linear sandwich single-ion magnets containing [Er(COT)] fragment were selected to probe the magneto-structural correlations using methods. For prolate shaped Er ion, an equatorially coordinating geometry is preferable to achieve high axial anisotropy. Our calculations confirm that the increasing transversal crystal field (CF) induced by equatorial ligands truly enhances the energy barrier. However, if we continue to strengthen the transversal CF in the equatorial plane, the energy barrier inversely decreases. Our further results show that a medium ligand ring of benzene is preferable for prolate shaped Er ion, which can induce the modest energy splitting and the small temperature-assisted quantum tunneling of magnetization. Although the obtained energy barrier of 343.1 cm for our created model [(CH)Er(COT)] is the largest, it is also much smaller than the Dy-based compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt04157fDOI Listing

Publication Analysis

Top Keywords

energy barrier
12
linear sandwich
8
prolate shaped
8
shaped ion
8
understanding magnetic
4
magnetic anisotropy
4
anisotropy linear
4
sandwich [ercot]-based
4
[ercot]-based compounds
4
compounds theoretical
4

Similar Publications

The electrochemical conversion of nitrate to ammonia is necessary to restore the globally perturbed nitrogen cycle. Herein, the regulated coordination of active Cu single atoms to selectively modulate the energy barriers of proton-electron transfer steps was investigated and offered valuable insights for improving the selectivity and kinetics of the NORR.

View Article and Find Full Text PDF

Low-Level Fe Doping in CoMoO Enhances Surface Reconstruction and Electronic Modulation Creating an Outstanding OER Electrocatalyst for Water Splitting.

Inorg Chem

January 2025

Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China.

Efficient and stable nonprecious metal-based oxygen evolution reaction (OER) electrocatalysts are pivotal for water electrolysis technology. Herein, we are reporting an effective strategy for fabricating efficient Co-based OER electrocatalysts by low-level Fe doping in CoMoO to boost surface reconstruction and electronic modulation, which resulted in excellent OER electroactivity consequently. Our findings reveal that a mere 5.

View Article and Find Full Text PDF

Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones.

View Article and Find Full Text PDF

Interfacial engineering-induced electronic state modulation in Ru/MoS heterostructures for efficient hydrogen evolution reaction.

Chem Commun (Camb)

January 2025

Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.

In traditional binary heterojunction catalysts, mismatched energy band structures lead to higher electron transfer barriers. By reducing the work function difference a ternary Ru-RuS/MoS heterostructure, we developed a HER catalyst with remarkable activity (17 mV@10 mA cm) and excellent stability (300 h@500 mA cm).

View Article and Find Full Text PDF

A protocol for the investigation of the intramolecular vibrational energy redistribution problem: the isomerization of nitrous acid as a case of study.

Phys Chem Chem Phys

January 2025

Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748 - Butantã, São Paulo, 05508-900, Brazil.

The conformational isomerization of nitrous acid (HONO) promoted by excitation of the or stretching normal coordinates is the first observed case of an infrared-induced photochemical reaction. The energy captured by the excited normal modes is redistributed into a highly excited vibrational level of the torsion normal coordinate, which is the isomerization reaction coordinate. Herein, we present simple numerical methods to qualitatively investigate the coupling between the normal coordinates and the possible gateways for vibrational energy redistribution leading to the isomerization process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!