A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ferroelectric-Relaxor Crossover and Energy Storage Properties in SrNaNbO-Based Tungsten Bronze Ceramics. | LitMetric

Ferroelectric-Relaxor Crossover and Energy Storage Properties in SrNaNbO-Based Tungsten Bronze Ceramics.

ACS Appl Mater Interfaces

National Engineering Research Center of Electromagnetic Radiation Control Materials, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, People's Republic of China.

Published: February 2022

Filled and unfilled SrNaNbO-based tungsten bronze ceramics based on Gd doping were prepared using a traditional solid-state reaction method. Relaxor behaviors of the two different systems were analyzed, and the corresponding energy storage performance was also characterized. With the support of weakly coupled polar nanoregions and a non-polar matrix, an energy storage density of 2.37 J/cm and an efficiency of 94.4% were obtained in the SrGdNaNbO ceramic. A discharge energy density of 2.51 J/cm and a power density of 59.1 MW/cm further proved its prospect for practical applications. In addition, the thermal stability and fatigue resistance of the ceramic were also evaluated. At the same time, under the theoretical framework of a perovskite and tungsten bronze, the contribution of vacancies to the local structure and relaxor behavior was briefly discussed. Because the currently used ceramics do not contain easily reducible metal oxides, this work lays the foundation for the development of multilayer ceramic capacitors that use base metals as internal electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c23673DOI Listing

Publication Analysis

Top Keywords

energy storage
12
tungsten bronze
12
srnanbo-based tungsten
8
bronze ceramics
8
ferroelectric-relaxor crossover
4
energy
4
crossover energy
4
storage properties
4
properties srnanbo-based
4
ceramics filled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!