Background: NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated macrophage pyroptosis plays an important role in sepsis-induced acute lung injury (ALI). Inhibition of pyroptosis may be a way to alleviate inflammation as well as tissue damage triggered after lipopolysaccharide (LPS) stimulation. The aim of the present study was to explore whether buformin (BF), a hypoglycemic agent, could alleviate sepsis-induced ALI by inhibiting pyroptosis.

Methods: Wildtype C57BL/6 mice were randomly divided into control group, BF group, LPS group and LPS+BF group. BF group and LPS+BF group were pretreated with BF at a dose of 25 mg/kg, and the changes were observed. In addition, BF was used to interfere with THP-1 cells. The therapeutic effect of BF has been verified by intraperitoneal injection of BF in vivo after LPS stimulation.

Results: Inflammation and injury was significantly reduced in BF pretreated mice, and the indexes related to pyroptosis were suppressed. The phosphorylation of AMP-activated protein kinase (AMPK) in lung tissues of mice in the BF and LPS+BF groups was significantly higher. In THP-1 cells, the AMPK inhibitor, Compound C was added to demonstrate that BF worked via AMPK to inhibit NLRP3 inflammasome. It was further demonstrated that BF up-regulated autophagy, which in turn promoted NLRP3 inflammasome degradation. On the other hand, BF decreased NLRP3 mRNA level by increasing nuclear factor-erythroid 2 related factor 2 (Nrf2). And BF showed a therapeutic effect after LPS challenge.

Conclusion: Our study confirmed that BF inhibited NLRP3-mediated pyroptosis in sepsis-induced ALI by up-regulating autophagy and Nrf2 protein level through an AMPK-dependent pathway. This provides a new strategy for clinical mitigation of sepsis-induced ALI.

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20211156DOI Listing

Publication Analysis

Top Keywords

sepsis-induced ali
12
sepsis-induced acute
8
acute lung
8
lung injury
8
nlrp3-mediated pyroptosis
8
ampk-dependent pathway
8
group group
8
group lps+bf
8
lps+bf group
8
thp-1 cells
8

Similar Publications

Tangeretin alleviates sepsis-induced acute lung injury by inhibiting ferroptosis of macrophage via Nrf2 signaling pathway.

Chin Med

January 2025

Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.

Background: Sepsis-induced acute lung injury (ALI) is a severe clinical condition accompanied with high mortality. Tangeretin, which is widely found in citrus fruits, has been reported to exert antioxidant and anti-inflammatory properties. However, whether tangeretin protects against sepsis-induced ALI and the potential mechanisms remain unclear.

View Article and Find Full Text PDF

TREM2 alleviates sepsis-induced acute lung injury by attenuating ferroptosis via the SHP1/STAT3 pathway.

Free Radic Biol Med

January 2025

Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China. Electronic address:

Sepsis-induced acute lung injury (ALI) is a complex and life-threatening condition characterized by excessive inflammatory responses, ferroptosis, and oxidative stress. A comprehensive investigation and effective therapeutic strategies are crucial for managing this condition. In this study, we established in vivo sepsis models using lipopolysaccharide (LPS) in wild-type (WT) mice and triggering receptor expressed on myeloid cells 2 (TREM2) knockout (TREM2-KO) mice to assess lung morphology, oxidative stress, and ferroptosis.

View Article and Find Full Text PDF

Background: Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes.

View Article and Find Full Text PDF

Background: Sepsis is a systemic inflammatory response caused by infection. When this inflammatory response spreads to the lungs, it can lead to acute lung injury (ALI) or more severe acute respiratory distress syndrome (ARDS). Pulmonary fibrosis is a potential complication of these conditions, and the early occurrence of pulmonary fibrosis is associated with a higher mortality rate.

View Article and Find Full Text PDF

The aim of this study was to reveal the mechanism of cold stimulation (CS)-bronchial epithelial cells (BECs) derived exosomes (CS-BECs-exo) aggravated sepsis induced acute lung injury (SALI). CS-BECs-exo were separated by differential centrifugation and were characterized. Proteomics, immunoprecipitation, and RAGE knockout (RAGE) mice were used to investigate the mechanism of CS-BECs-exo aggravated SALI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!