Evoking Highly Immunogenic Ferroptosis Aided by Intramolecular Motion-Induced Photo-Hyperthermia for Cancer Therapy.

Adv Sci (Weinh)

Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.

Published: April 2022

Immunogenic cell death (ICD) through apoptosis or necroptosis is widely adopted to improve the therapeutic effect in cancer treatment by triggering a specific antitumor immunity. However, the tumor resistance to apoptosis/necroptosis seriously impedes the therapeutic effect. Recently, ferroptosis featured with excessive lipid peroxidation is demonstrated capable of bypassing the apoptosis/necroptosis resistance to kill cancer cells. To date, numerous efficient ferroptosis inducers are developed and successfully utilized for sensitizing cancer cells to ferroptosis. Unfortunately, these inducers can hardly generate adequate immunogenicity during induction of ferroptotic cancer cell death, which distinctly attenuates the efficacy of triggering antitumor immune response, therefore leads to unsatisfactory therapeutic effect. Herein, a novel high-performance photothermal nanoparticle (TPA-NDTA NP) is designed by exploiting energy via excited-state intramolecular motion and employed for immensely assisting ferroptosis inducer to evoke highly efficient ICD through ferroptosis pathway. Tumor models with poor immunogenicity are used to demonstrate the tremendously enhanced therapeutic effect endowed by highly enhanced immunogenic ferroptosis in vitro and in vivo by virtue of the NPs. This study sheds new light on a previously unrecognized facet of boosting the immunogenicity of ferroptosis for achieving satisfactory therapeutic effect in cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981454PMC
http://dx.doi.org/10.1002/advs.202104885DOI Listing

Publication Analysis

Top Keywords

ferroptosis
8
immunogenic ferroptosis
8
cancer therapy
8
cell death
8
therapeutic cancer
8
cancer cells
8
ferroptosis inducers
8
cancer
6
therapeutic
5
evoking highly
4

Similar Publications

Intranasal iron administration induces iron deposition, immunoactivation, and cell-specific vulnerability in the olfactory bulb of C57BL/6 mice.

Zool Res

January 2025

School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao, Shandong, 266071, China. E-mail:

Iron is the most abundant transition metal in the brain and is essential for brain development and neuronal function; however, its abnormal accumulation is also implicated in various neurological disorders. The olfactory bulb (OB), an early target in neurodegenerative diseases, acts as a gateway for environmental toxins and contains diverse neuronal populations with distinct roles. This study explored the cell-specific vulnerability to iron in the OB using a mouse model of intranasal administration of ferric ammonium citrate (FAC).

View Article and Find Full Text PDF

Background: Iron is an essential micronutrient for cell survival and growth; however, excess of this metal drives ferroptosis. Although maternal iron imbalance and placental hypoxia are independent contributors to the pathogenesis of preeclampsia, a hypertensive disorder of pregnancy, the mechanisms by which their interaction impinge on maternal and placental health remain elusive.

Methods: We used placentae from normotensive and preeclampsia pregnancy cohorts, human H9 embryonic stem cells differentiated into cytotrophoblast-like cells, and placenta-specific preeclamptic mice.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a disease that affects more than 850 million people. Acute kidney injury (AKI) is a common cause of CKD, and blocking the AKI-CKD transition shows promising therapeutic potential. Herein, we found that butyrolactone I (BLI), a natural product, exerts significant nephroprotective effects, including maintenance of kidney function, inhibition of inflammatory response, and prevention of fibrosis, in both folic acid- and ureteral obstruction-induced AKI-CKD transition mouse models.

View Article and Find Full Text PDF

Abnormal cholesterol metabolism has become a popular therapeutic target in cancer therapy. In recent years there has been a surge in interest in the anti-tumor activities of saponins, particularly their ability to disrupt cholesterol homeostasis in tumor cells. Cholesterol regulation by saponins is a complex process that involves multiple mechanisms.

View Article and Find Full Text PDF

Objective: To investigate the role of PCBP1 in the inhibition of lung adenocarcinoma proliferation by carbon irradiation.

Methods: A549 cells were irradiated with different doses of carbon ions to observe clonal survival and detect changes in cell proliferation. Whole transcriptome sequencing and the Illumina platform were used to analyze the differentially expressed genes in A549 cells after carbon ion irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!