Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Quality indicators should be assessed and monitored to improve colonoscopy quality in clinical practice. Endoscopists must enter relevant information in the endoscopy reporting system to facilitate data collection, which may be inaccurate. The current study aimed to develop a full deep learning-based algorithm to identify and analyze intra-procedural colonoscopy quality indicators based on endoscopy images obtained during the procedure.
Methods: A deep learning system for classifying colonoscopy images for quality assurance purposes was developed and its performance was assessed with an independent dataset. The system was utilized to analyze captured images and results were compared with those of real-world reports.
Results: In total, 10,417 images from the hospital endoscopy database and 3157 from Hyper-Kvasir open dataset were utilized to develop the quality assurance algorithm. The overall accuracy of the algorithm was 96.72% and that of the independent test dataset was 94.71%. Moreover, 761 real-world reports and colonoscopy images were analyzed. The accuracy of electronic reports about cecal intubation rate was 99.34% and that of the algorithm was 98.95%. The agreement rate for the assessment of polypectomy rates using the electronic reports and the algorithm was 0.87 (95% confidence interval 0.83-0.90). A good correlation was found between the withdrawal time calculated using the algorithm and that entered by the physician (correlation coefficient r = 0.959, p < 0.0001).
Conclusion: We proposed a novel deep learning-based algorithm that used colonoscopy images for quality assurance purposes. This model can be used to automatically assess intra-procedural colonoscopy quality indicators in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00464-021-08993-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!