Background: While the biomarkers of COVID-19 severity have been thoroughly investigated, the key biological dynamics associated with COVID-19 resolution are still insufficiently understood.

Main Body: We report a case of full resolution of severe COVID-19 due to convalescent plasma transfusion in a patient with underlying multiple autoimmune syndrome. Following transfusion, the patient showed fever remission, improved respiratory status, and rapidly decreased viral burden in respiratory fluids and SARS-CoV-2 RNAemia. Longitudinal unbiased proteomic analysis of plasma and single-cell transcriptomics of peripheral blood cells conducted prior to and at multiple times after convalescent plasma transfusion identified the key biological processes associated with the transition from severe disease to disease-free state. These included (i) temporally ordered upward and downward changes in plasma proteins reestablishing homeostasis and (ii) post-transfusion disappearance of a particular subset of dysfunctional monocytes characterized by hyperactivated Interferon responses and decreased TNF-α signaling.

Conclusions: Monitoring specific subsets of innate immune cells in peripheral blood may provide prognostic keys in severe COVID-19. Moreover, understanding disease resolution at the molecular and cellular level should contribute to identify targets of therapeutic interventions against severe COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820674PMC
http://dx.doi.org/10.1101/2022.02.03.22269612DOI Listing

Publication Analysis

Top Keywords

convalescent plasma
12
severe covid-19
12
disease resolution
8
key biological
8
plasma transfusion
8
transfusion patient
8
peripheral blood
8
covid-19
6
plasma
5
biologic correlates
4

Similar Publications

Introduction: Upon infection, T cell-driven B cell responses in GC reactions induce memory B cells and antibody-secreting cells that secrete protective antibodies. How formation of specifically long-lived plasma cells is regulated via the interplay between specific B and CD4+ T cells is not well understood. Generally, antibody levels decline over time after clearance of the primary infection.

View Article and Find Full Text PDF

The generalisability of critical illness molecular phenotypes to low- and middle-income countries (LMICs) is unknown. We show that molecular phenotypes derived in high-income countries (hyperinflammatory and hypoinflammatory, reactive and uninflamed) stratify sepsis patients in Uganda by physiological severity, mortality risk and dysregulation of key pathobiological domains. A classifier model including data available at the LMIC bedside modestly discriminated phenotype assignment (area under the receiver operating characteristic curve (AUROC) 0.

View Article and Find Full Text PDF

Background And Objectives: Apheresis platelets products and plasma are essential for medical interventions, but both still have inherent risks associated with contamination and viral transmission. Platelet products are vulnerable to bacterial contamination due to storage conditions, while plasma requires extensive screening to minimize virus transmission risks. Here we investigate rapid irradiation to sterilizing doses for bacteria and viruses as an innovative pathogen reduction technology.

View Article and Find Full Text PDF

Convalescent plasma therapy (CPT) is one of the treatment modalities used for COVID-19. Initial smaller studies showed the usefulness of CPT in COVID-19, but larger studies showed that it is not effective. This is a retrospective observational study conducted between 1st June 2020 and 31st July 2021 at a tertiary hospital in Noida, India.

View Article and Find Full Text PDF

Current perspectives on vaccines and therapeutics for Lassa Fever.

Virol J

December 2024

Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.

Lassa virus, the cause of deadly Lassa fever, is endemic in West Africa, where thousands of cases occur on an annual basis. Nigeria continues to report increasingly severe outbreaks of Lassa Fever each year and there are currently no approved vaccines or therapeutics for the prevention or treatment of Lassa Fever. Given the high burden of disease coupled with the potential for further escalation due to climate change the WHO has listed Lassa virus as a priority pathogen with the potential to cause widespread outbreaks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!