Traumatic brain injury (TBI) survivors suffer from long-term disability and neuropsychiatric sequelae due to irreparable brain tissue destruction. However, there are still few efficient therapies to promote neurorestoration in damaged brain tissue. This study aimed to investigate whether the pro-oncogenic gene ski can promote neurorestoration after TBI. We established a ski-overexpressing experimental TBI mouse model using adenovirus-mediated overexpression through immediate injection after injury. Hematoxylin-eosin staining, MRI-based 3D lesion volume reconstruction, neurobehavioral tests, and analyses of neuronal regeneration and astrogliosis were used to assess neurorestorative efficiency. The effects of ski overexpression on the proliferation of cultured immature neurons and astrocytes were evaluated using imaging flow cytometry. The Ski protein level increased in the perilesional region at 3 days post injury. ski overexpression further elevated Ski protein levels up to 14 days post injury. Lesion volume was attenuated by approximately 36-55% after ski overexpression, with better neurobehavioral recovery, more newborn immature and mature neurons, and less astrogliosis in the perilesional region. Imaging flow cytometry results showed that ski overexpression elevated the proliferation rate of immature neurons and reduced the proliferation rate of astrocytes. These results show that ski can be considered a novel neurorestoration-related gene that effectively promotes neurorestoration, facilitates neuronal regeneration, and reduces astrogliosis after TBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41434-022-00320-x | DOI Listing |
Bone Rep
December 2024
Department of Traumatic Orthopedics, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512026, China.
Neurochem Res
November 2024
Lanzhou University Second Hospital, LanzhouGansu, 730000, China.
The glial scar that forms at the site of injury after spinal cord injury (SCI) is an important physical and biochemical barrier that prevents axonal regeneration and thus delays functional recovery. Ski is a multifunctional transcriptional co-regulator that is involved in a wide range of physiological and pathological processes in humans. Previous studies by our group found that Ski is significantly upregulated in the spinal cord after in vivo injury and in astrocytes after in vitro activation, suggesting that Ski may be a novel molecule regulating astrocyte activation after spinal cord injury.
View Article and Find Full Text PDFJ Mol Med (Berl)
December 2024
Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junin 956, C1113AAD, Buenos Aires, Argentina.
Sphingosine kinase-1 (SPHK1), the enzyme that catalyzes the synthesis of the pro-oncogenic molecule sphingosine-1-phosphate, is commonly upregulated in breast cancer cells and has been linked with poor prognosis and progression by promoting cell transformation, proliferation, angiogenesis, and metastasis. Therefore, SPHK1-targeting drugs have been proposed for breast cancer treatment, with better antitumor results when they are combined with chemotherapy. Previously, we demonstrated that the synthetic flavonoid 2'-nitroflavone (2'NF) exerted a potent and selective antiproliferative effect in murine HER2-positive LM3 mammary tumor cells.
View Article and Find Full Text PDFJ Integr Plant Biol
November 2024
State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
Disease resistance is often associated with compromised plant growth and yield due to defense-growth tradeoffs. However, key components and mechanisms underlying the defense-growth tradeoffs are rarely explored in maize. In this study, we find that ZmSKI3, a putative subunit of the SUPERKILLER (SKI) complex that mediates the 3'-5' degradation of RNA, regulates both plant development and disease resistance in maize.
View Article and Find Full Text PDFMol Ther
July 2024
Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Electronic address:
The tumor microenvironment presents many obstacles to effective chimeric antigen receptor (CAR) T cell therapy, including glucose competition from tumor and myeloid cells. Using mouse models of acute lymphoblastic leukemia (ALL), renal cell carcinoma (RCC), and glioblastoma (GBM), we show that enforced expression of the glucose transporter GLUT1 enhances anti-tumor efficacy and promotes favorable CAR-T cell phenotypes for two clinically relevant CAR designs, 19-28z and IL13Rα2-BBz. In the NALM6 ALL model, 19-28z-GLUT1 promotes T stem cell-like memory formation and prolongs survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!