Thermodynamics of evolution and the origin of life.

Proc Natl Acad Sci U S A

Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands

Published: February 2022

We outline a phenomenological theory of evolution and origin of life by combining the formalism of classical thermodynamics with a statistical description of learning. The maximum entropy principle constrained by the requirement for minimization of the loss function is employed to derive a canonical ensemble of organisms (population), the corresponding partition function (macroscopic counterpart of fitness), and free energy (macroscopic counterpart of additive fitness). We further define the biological counterparts of temperature (evolutionary temperature) as the measure of stochasticity of the evolutionary process and of chemical potential (evolutionary potential) as the amount of evolutionary work required to add a new trainable variable (such as an additional gene) to the evolving system. We then develop a phenomenological approach to the description of evolution, which involves modeling the grand potential as a function of the evolutionary temperature and evolutionary potential. We demonstrate how this phenomenological approach can be used to study the "ideal mutation" model of evolution and its generalizations. Finally, we show that, within this thermodynamics framework, major transitions in evolution, such as the transition from an ensemble of molecules to an ensemble of organisms, that is, the origin of life, can be modeled as a special case of bona fide physical phase transitions that are associated with the emergence of a new type of grand canonical ensemble and the corresponding new level of description.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833196PMC
http://dx.doi.org/10.1073/pnas.2120042119DOI Listing

Publication Analysis

Top Keywords

origin life
12
evolution origin
8
canonical ensemble
8
ensemble organisms
8
macroscopic counterpart
8
temperature evolutionary
8
evolutionary temperature
8
evolutionary potential
8
phenomenological approach
8
evolutionary
6

Similar Publications

Concomitant formation of protocells and prebiotic compounds under a plausible early Earth atmosphere.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Crystallographic Studies, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científica, Armilla 18100, Spain.

Revealing the origin of life and unambiguously detecting fossil remains of the earliest organisms are closely related aspects of the same scientific research. The synthesis of prebiotic molecular building blocks of life and the first compartmentalization into protocells have been considered two events apart in time, space, or both. We conducted lightning experiments in borosilicate reactors filled with a mixture of gases mimicking plausible geochemical conditions of early Earth.

View Article and Find Full Text PDF

The structure of the early metabolic network is unknown. Here, we report that when considered together, pentose utilization pathways form all life-essential precursors. We speculate that the chemistry preserved in pentose metabolism could therefore have been a central structural element in early metabolism.

View Article and Find Full Text PDF

Vestibular rehabilitation, an evidence-based physical therapy approach, plays a crucial role in managing and recovering from gaze and balance disorders, including those of central origin. This study, targeted at the community of Italian healthcare practitioners, is vital in understanding the application of vestibular rehabilitation in neurological disorders and in identifying knowledge gaps, barriers, and future directions. This is a cross-sectional study directed at healthcare professionals involved in neurorehabilitation in Italy.

View Article and Find Full Text PDF

ModeHunter is a modular Python software package for the simulation of 3D biophysical motion across spatial resolution scales using modal analysis of elastic networks. It has been curated from our in-house Python scripts over the last 15 years, with a focus on detecting similarities of elastic motion between atomic structures, coarse-grained graphs, and volumetric data obtained from biophysical or biomedical imaging origins, such as electron microscopy or tomography. With ModeHunter, normal modes of biophysical motion can be analyzed with various static visualization techniques or brought to life by dynamics animation in terms of single or multimode trajectories or decoy ensembles.

View Article and Find Full Text PDF

The northern part of Asia, including Siberia, the Mongolian Plateau, and northern China, is not only a crossroads for population exchange on the Eurasian continent but also an important bridge connecting the American continent. This region holds a unique and irreplaceable significance in exploring the origins of humanity, tracking human migration routes, and elucidating evolutionary mechanisms. Despite the limited number of samples unearthed, varying preservation conditions, and constraints of technical means, our understanding of the interactions among populations in northern Asia is still in its infancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!