We present a magnetic sensor with energy resolution per bandwidth [Formula: see text] We show how a Rb single-domain spinor Bose-Einstein condensate, detected by nondestructive Faraday rotation probing, achieves single-shot low-frequency magnetic sensitivity of 72(8) fT measuring a volume [Formula: see text] for 3.5 s, and thus, [Formula: see text] We measure experimentally the condensate volume, spin coherence time, and readout noise and use phase space methods, backed by three-dimensional mean-field simulations, to compute the spin noise. Contributions to the spin noise include one-body and three-body losses and shearing of the projection noise distribution, due to competition of ferromagnetic contact interactions and quadratic Zeeman shifts. Nonetheless, the fully coherent nature of the single-domain, ultracold two-body interactions allows the system to escape the coherence vs. density trade-off that imposes an energy resolution limit on traditional spin precession sensors. We predict that other Bose-condensed alkalis, especially the antiferromagnetic Na, can further improve the energy resolution of this method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833174 | PMC |
http://dx.doi.org/10.1073/pnas.2115339119 | DOI Listing |
Commun Chem
January 2025
Energy & Materials Transition, Netherlands Organization for Applied Scientific Research (TNO), Urmonderbaan 22, Geleen, 6167RD, The Netherlands.
Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Transcription factors (TFs) recognize specific bases within their DNA-binding motifs, with each base contributing nearly independently to total binding energy. However, the energetic contributions of particular dinucleotides can deviate strongly from the additive approximation, indicating that some TFs can specifically recognize DNA dinucleotides. Here we solved high-resolution (<1 Å) structures of MYF5 and BARHL2 bound to DNAs containing sets of dinucleotides that have different affinities to the proteins.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Pacific Brain Health Center, Pacific Neuroscience Institute Foundation, Santa Monica, CA, USA.
Background: Brain accumulation of amyloid-ß (Aß) in plaques and neurons is the cause of AD neuropathology that is opposed by autologous monocyte/macrophages (MMs) in health but this defense fails in AD.
Method: RNAseq, immunochemistry of the brain, immunofluorescence, and confocal microscopy of macrophages.
Result: In the AD brain, MMs shuttle Aß from parenchyma to vessels, which develop vasculitis, causing amyloid-related imaging abnormalities (ARIAs).
Phys Rev Lett
December 2024
Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
Detection and attribution (DA) studies are cornerstones of climate science, providing crucial evidence for policy decisions. Their goal is to link observed climate change patterns to anthropogenic and natural drivers via the optimal fingerprinting method (OFM). We show that response theory for nonequilibrium systems offers the physical and dynamical basis for OFM, including the concept of causality used for attribution.
View Article and Find Full Text PDFACS Sens
January 2025
State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!