The proliferation of harmful cyanobacterial algal blooms is of concern due to the associated release of toxins affecting ecosystems and human health. The paralytic shellfish poison saxitoxin (STX) is a small polar alkaloid that can occur in inland and marine aquatic environments. Here, we optimized a fast and sensitive analytical method for the determination of STX, neosaxitoxin (NeoSTX), and their decarbamoyl analogues in surface waters. The method involves a simple filtration, addition of isotope-labelled internal standard (ILIS), and analysis by on-line solid-phase extraction coupled to hydrophilic interaction liquid chromatography high-resolution mass spectrometry (on-line SPE-HILIC-HRMS). Except glass fiber filters, other tested materials (e.g., nylon, nitrocellulose) provided suitable filtration performance. Time-dependent adsorptive losses occurred during the LC-MS batch sequence if glass autosampler vials were used, while no such effect was observed for polypropylene autosampler vials. Matrix effects were evaluated for 4 different quantification scenarios, including external vs. internal curves and neat reagent water vs. matrix-matched curves. Matrix-matched calibration with ILIS correction (NeoSTX-N) provided the best performance overall. The analytical method was validated in freshwater lake water and estuarine brackish water (30‰ salinity), with suitable determination coefficients (R > 0.9975), matrix spike accuracy (90-107%), and intraday/interday precision (RSD of 0.61-16%). Method limits of detection (LOD in lake water: 0.72-3.9 ng/L) are also improved over most of the recent literature. The method was applied to a set of 302 surface water samples collected in Canada, France, and the United Kingdom, and positive detections were reported for STX (max: 98 ng/L), decarbamoyl-STX (max: 15 ng/L), and NeoSTX (max: 87 ng/L).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2022.123267 | DOI Listing |
Sci Total Environ
October 2024
Univ Montpellier, IRD, CNRS, IFREMER, MARBEC laboratory, Place Eugène Bataillon, 34095 Montpellier, France. Electronic address:
The dinoflagellate Gymnodinium catenatum is considered the primary cause of recurrent paralytic shellfish toxins (PSTs) in shellfish on the Moroccan Mediterranean coasts. The impacts of key environmental factors on the growth, cell yield, cell size and PST content of G. catenatum were determined.
View Article and Find Full Text PDFToxins (Basel)
May 2024
Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (Intecmar), Vilagarcía de Arousa, 36611 Pontevedra, Spain.
Paralytic shellfish poisoning is an important concern for mollusk fisheries, aquaculture, and public health. In Galicia, NW Iberian Peninsula, such toxicity has been monitored for a long time using mouse bioassay. Therefore, little information exists about the precise toxin analogues and their possible transformations in diverse mollusk species and environments.
View Article and Find Full Text PDFChem Biol Interact
May 2024
Department of Sciences, John Jay College of Criminal Justice, The City University of New York, New York, NY, 10019, USA; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA. Electronic address:
Mitomycin C (MC) is an anti-cancer drug which functions by forming interstrand crosslinks (ICLs) between opposing DNA strands. MC analog, 10-decarbamoyl mitomycin C (DMC), unlike MC, has stronger cytotoxic effects on cancer cells with TP53 mutation. We previously demonstrated that MC/DMC could activate p21 in MCF-7 (TP53-proficient) and K562 (TP53 deficient) cells in a TP53-independent mode.
View Article and Find Full Text PDFEnviron Sci Technol
December 2022
Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina29208, United States.
The harmful, filamentous cyanobacteria produces several toxic analogues of saxitoxin ( toxins 1-6, or LWTs 1-6), grows in shallow water, and can deposit significant biomass on nearby shorelines. Here, we show that the LWTs are stable in the biomass during subsequent drying but that the process facilitates the later release of LWTs upon return to the water column. Under basic conditions, LWTs hydrolyzed to generate products that were significantly more neurotoxic than the initial toxins.
View Article and Find Full Text PDFToxins (Basel)
July 2022
Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195 Playa Palo de Santa Rita, La Paz C.P. 23096, Mexico.
The harmful microalgae is a unique naked dinoflagellate that produces paralytic shellfish poisoning toxins (PSTs). This species is common along the coasts of the Mexican Pacific and is responsible for paralytic shellfish poisoning, which has resulted in notable financial losses in both fisheries and aquaculture. In the Gulf of California, has been related to mass mortality events in fish, shrimp, seabirds, and marine mammals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!