The high rate of HIV new infections and AIDS-related deaths each year make prevention tools still necessary today. Different dosage forms - including films - for vaginal administration of antiretroviral drugs have been developed for this purpose. Six batches of Tenofovir-loaded films were formulated based on Eudragit® L100 (EL100) and chitosan, containing triethyl citrate and glycerol. In all the cases films structured in two layers - the upper layer mainly attributed to EL100 and the lower layer to chitosan - were revealed by SEM. A higher content in EL100 and plasticizers improves the mechanical properties and control over drug release in the vaginal medium without affecting mucoadhesion. The EL100-based layer acts as a structuring agent that controls Tenofovir release for days in the vaginal medium while it occurs in a few hours in the presence of seminal fluid. Bilayer films with the highest tested content of EL100 and plasticizers would be the most suitable as vaginal microbicides as they are easier to administer due to their excellent mechanical properties and they offer more comfortable posology and enhanced protection against HIV during intercourse due to their pH-responsive release of Tenofovir.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2022.121554 | DOI Listing |
J Phys Condens Matter
January 2025
Dep. Fisica, Universidade Federal de Minas Gerais, ICEX, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, BRAZIL.
Nowadays, experimental research advances in condensed matter physics are deep-rooted in the development and manipulation of nanomaterials, making it essential to explore the fundamental properties of materials that are candidates for nanotechnology. In this work, we study the dependence of the molybdenum disulfide (MoS2) Raman modes on the sample temperature and on the excitation laser power. From the correlation between these two sets of measurements, we determine the planar thermal conductivity of MoSmonolayers, bilayers, trilayers, four layers, seven layers, and eight layers.
View Article and Find Full Text PDFFoods
January 2025
Center of Excellence Polymer Processing, Faculty of Engineering, Dunarea de Jos University of Galați, Domnească Street, No. 111, 800201 Galați, Romania.
Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning.
View Article and Find Full Text PDFMolecules
December 2024
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
In this article, a series of novel conducting copolymers P(FuPy--EDOT) are prepared via cyclic voltammetry electropolymerization method by using N-furfuryl pyrrole (FuPy) and 3,4-ethylenedioxythiophene (EDOT) as comonomers. The molecular structure, surface morphology, electrochemical, and optical properties of the resulting copolymers are characterized in detail upon varying the feed ratios of FuPy/EDOT in the range of 1/1 to 1/9. The results demonstrate that the prepared P(FuPy--EDOT) copolymers with a higher proportion of EDOT units (FuPy/EDOT: 2/8~1/9) possess good redox activity, tunable optical absorption performances, and low band gaps (1.
View Article and Find Full Text PDFSmall
January 2025
School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, Carrer dels Til·lers, s/n, Bellaterra, 08193 Barcelona, Spain.
The influence of the film/substrate interface and the role of film thickness on the structural transition temperature for thin films of the asymmetric BTBT derivative 7-decyl-2-phenyl[1]benzothieno[3,2-][1]-benzothiophene (Ph-BTBT-10) have been addressed by using Kelvin probe force microscopy (KPFM) and synchrotron grazing incidence wide angle X-ray scattering (GIWAXS). Our data strongly suggest that the structural transformation from a single-layer phase to the thermodynamically stable bilayer structure develops from the bottom of the film to its surface. Contrary to observations in other organic semiconductor films, notably, the thinner the Ph-BTBT-10 film, the lower is the transition temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!