A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insight into the role and mechanism of polysaccharide in polymorphous magnesium oxide nanoparticle synthesis for arsenate removal. | LitMetric

Insight into the role and mechanism of polysaccharide in polymorphous magnesium oxide nanoparticle synthesis for arsenate removal.

Chemosphere

Key Laboratory of Catalysis Conversion and Energy Materials, Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China. Electronic address:

Published: June 2022

The low cost and non-toxic of magnesium oxides make it a potential eco-friendly material for arsenic removal. Polysaccharide is a kind of green modifier to obtain nanoscale MgO particles with a higher adsorption affinity. In this study, the impact of chain structures of polysaccharides on the morphology features and arsenate removal efficiency of MgO-NPs were investigated. Pullulan and starch facilitated the synthesis of flower-like MgO-NPs, and pectin facilitated the synthesis of plate-like ones. Although the two kinds of flower-like MgO-NPs undergone similar time to reach equilibrium, the one obtained from the starch-synthesis route showed a higher arsenate adsorption capacity (98 mg g), due to that their bushy and smaller petals on the surface provide more active sites for arsenic adsorption. The pectin-synthesis route also produced MgO-NPs with higher arsenate adsorption capacity (101 mg g), ascribed to stacking of nano-plates on their surfaces facilitated to form defect surfaces. However, due to their lower BET area, the plate-like MgO-NPs took twice times to reach equilibrium for arsenic adsorption compared with the others. In the stage for the hydrolysis of MgO, hydroxyl groups on the polymer chain provide active sites to physically trap or bond with MgO particles and then to produce hydrolyzed precursors. The poly chain containing inter- and intra-hydroxyl groups directed MgO molecular growing into hydroxide crystals with 3D frameworks during their nucleation and growth. However, pectin only provides inter-hydroxyl groups and directs to form hydroxides with 2D frameworks. Furthermore, the rapid-nucleation vs. slow-growth model in the stage of pyrolysis of hydroxide crystals successfully interprets the thinner petals and complex chemical phases of the final nanoparticles obtained from the pullulan-synthesis route. This work may provide direction and perspectives for the rational design of well-performing MgO materials for arsenate removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.133878DOI Listing

Publication Analysis

Top Keywords

arsenate removal
12
mgo particles
8
facilitated synthesis
8
flower-like mgo-nps
8
reach equilibrium
8
higher arsenate
8
arsenate adsorption
8
adsorption capacity
8
provide active
8
active sites
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!