The DNA sequences of the promoter and 5' upstream regions of six Agrobacterium tumefaciens Ti-plasmid encoded virulence (vir) genes were determined. The transcription initiation sites were mapped by the S1 nuclease protection assay. In the -10 region, the vir promoters share a consensus sequence that is homologous to a DNA sequence found in the same region of E. coli promoters. In contrast, the -35 region sequences are variable. Several vir genes contain two common hexanucleotide sequences, 5'CGAGTA3' and 5'GCAATT3'. Translation initiation codons for all vir genes, except virG, are preceded by sequences homologous to the ribosome binding site sequences found in E. coli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC339509PMC
http://dx.doi.org/10.1093/nar/14.3.1355DOI Listing

Publication Analysis

Top Keywords

vir genes
12
agrobacterium tumefaciens
8
tumefaciens ti-plasmid
8
sequences
5
promoters agrobacterium
4
ti-plasmid virulence
4
genes
4
virulence genes
4
genes dna
4
dna sequences
4

Similar Publications

Background: Early host immunity to acute respiratory infections (ARIs) is heterogenous, dynamic, and critical to an individual's infection outcome. Due to limitations in sampling frequency/timepoints, kinetics of early immune dynamics in natural human infections remain poorly understood. In this nationwide prospective cohort study, we leveraged a Tasso-SST based self-blood collection and stabilization tool (homeRNA) to profile detailed kinetics of the presymptomatic to convalescence host immunity to contemporaneous respiratory pathogens.

View Article and Find Full Text PDF

Genomic characterization of ST11-KL25 hypervirulent KPC-2-producing multidrug-resistant from China.

iScience

December 2024

Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.

The global prevalence of ST11 hypervirulent carbapenem-resistant (hv-CRKP) isolates has been increasingly documented, yet genomic characterization of this clone remains insufficiently explored. Here, we report a clinical ST11-KL25 hv-CRKP strain (KP156) that exhibited resistance to multiple antibiotics and demonstrated hypervirulence in a mouse infection model. Whole-genome sequencing revealed that KP156 harbored one virulence plasmid (pKP156-Vir) and two resistance plasmids (pKP156-KPC and pKP156-tetA).

View Article and Find Full Text PDF

The dissemination of antibiotic resistance genes (ARGs) in activated sludge (AS) systems poses significant environmental and public health challenges. The role of viruses, primarily bacteriophages, in storing and spreading ARGs in AS systems remains largely unexplored. This study characterized the viral community, virus-associated ARGs (vir_ARGs), and mobile genetic elements (MGEs) of aerobic AS viromes from eight wastewater treatment plants (WWTPs) in eastern China.

View Article and Find Full Text PDF

Amaranth is an ancient crop of the family Amaranthaceae, but it is fairly new to Russia. Its seeds and leaf biomass contain a high-quality gluten-free protein, fatty acids, squalene (a polyunsaturated hydrocarbon), flavonoids, vitamins, and minerals. A comprehensive study of amaranth, enhancement of its breeding, and development of new cultivars will contribute to food quality improvement through the use of plant raw materials enriched for wholesome and highly nutritious components.

View Article and Find Full Text PDF

In barley having adherent hulls, an irreversible connection between the pericarp with both palea and lemma is formed during grain maturation. A mutation in the () gene prevents this connection and leads to the formation of barley with non-adherent hulls. A genetic model of two isogenic lines was used to elucidate the genetic mechanisms of hull adhesion: a doubled haploid line having adherent hulls and its derivative with non-adherent hulls obtained by targeted mutagenesis of the gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!