The generation of DCs with augmented functions is a strategy for obtaining satisfactory clinical outcomes in tumor immunotherapy. We developed a novel synthetic adjuvant comprising a liposome conjugated with a DC-targeting Toll-like-receptor ligand and a pH-sensitive polymer for augmenting cross-presentation. In an in vitro study using mouse DCs, these liposomes were selectively incorporated into DCs, significantly enhanced DC function and activated immune responses to present an epitope of the incorporated antigen on the major histocompatibility complex class I molecules. Immunization of mice with liposomes encapsulating a tumor antigen significantly enhanced antigen-specific cytotoxicity. In tumor-bearing mice, vaccination with liposomes encapsulating a tumor antigen elicited complete tumor remission. Furthermore, vaccination significantly enhanced cytotoxicity, targeting not only the vaccinated antigen but also the other antigens of the tumor cell. These results indicate that liposomes are an ideal adjuvant to develop DCs with considerably high potential to elicit antigen-specific immune responses; they are a promising tool for cancer therapy with neoantigen vaccination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2022.01.048 | DOI Listing |
Respir Res
January 2025
Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
H3 lysine 4 trimethylation (H3K4me3) modification and related regulators extensively regulate various crucial transcriptional courses in health and disease. However, the regulatory relationship between H3K4me3 modification and anti-tumor immunity has not been fully elucidated. We identified 72 independent prognostic genes of lung adenocarcinoma (LUAD) whose transcriptional expression were closely correlated with known 27 H3K4me3 regulators.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Digestive Disease Center, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China.
Background: Programmed cell death ligand 1 (PD-L1) expression on immune cells is correlated with the efficacy of immune checkpoint inhibitor (ICI) therapy in various types of cancer. Platelets are important components of the tumour microenvironment (TME) and are widely involved in the development of many types of cancer including colorectal cancer (CRC). However, the role of PD-L1 positive platelets in ICI therapy for CRC remains unknown.
View Article and Find Full Text PDFBMC Cancer
January 2025
Patient Centered Solutions, IQVIA, Reading, UK.
Background: Despite approvals of new first-line immunotherapies for advanced/metastatic gastric cancer/gastroesophageal junction cancer (aGC/GEJC), patients' median survival is around 14 months and their health-related quality of life (HRQoL) is affected by disease-related symptoms and treatment-related side effects. Using a targeted literature review (TLR) and patient interviews, this study identified disease- and treatment-related concepts that are important to patients with aGC/GEJC and their HRQoL.
Methods: A TLR was conducted to identify primary qualitative studies from 2018 to 2021 on patients' experiences with aGC/GEJC.
Sci Rep
January 2025
Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
Hepatocellular carcinoma (HCC) is a predominant cause of cancer-related mortality globally, noted for its propensity towards late-stage diagnosis and scarcity of effective treatment modalities. The process of metabolic reprogramming, with a specific emphasis on lipid metabolism, is instrumental in the progression of HCC. Nevertheless, the precise mechanisms through which lipid metabolism impacts HCC and its viability as a therapeutic target have yet to be fully elucidated.
View Article and Find Full Text PDFNature
January 2025
Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!