AI Article Synopsis

  • - In June 2019, a case of paralytic shellfish poisoning (PSP) was discovered in France, highlighting potential undetected instances of shellfish-related neurotoxic poisoning, even when toxin levels were below regulatory limits.
  • - A retrospective study of shellfish poisoning cases from 2012 to 2019 revealed that 22% of 619 cases had neurological symptoms, with 14 suspected to be linked to PSP and one to amnesic shellfish poisoning; blood and urine tests for toxins were not conducted.
  • - The findings prompted French health agencies to create a specific questionnaire and recommend protocols for documenting neurological symptoms after shellfish consumption, including enhanced monitoring of poisoning cases.

Article Abstract

Context: In June 2019, a paralytic shellfish poisoning (PSP) case related to the consumption of mussels contaminated by saxitoxins at a concentration below the regulatory threshold came to the attention of the French Agency for Food, Environmental and Occupational Health and Safety (ANSES). This pointed to probable undetected human cases of poisoning by neurotoxic phycotoxins.

Methods: We conducted a retrospective study of poisoning cases by bivalve shellfish (oysters, mussels and scallops) recorded by the French Poison Control Centres (PCC) from 2012 to 2019. All medical records were reviewed by a toxicologist.Cases that could be related to neurotoxic phycotoxins were selected and described. Diagnosis was based on symptoms compatible with ingestion of contaminated shellfish and on contamination data for the shellfish production area (analysed by the French Research Institute for Exploitation of the Sea, Ifremer), or notifications to the European Rapid Alert System for Food and Feed when the origin of the shellfish was known.

Results: Among the 619 shellfish poisoning cases recorded by the PCCs from 2012 to 2019, 22% ( = 134) had reported at least one neurological symptom (headache, dizziness or paraesthesia). Review of medical records for the 134 patients led to suspicion of 14 cases of PSP and one case of amnesic shellfish poisoning. Five patients experienced persistent neurological symptoms. Marine toxins were not tested for in the blood or urine of these patients.

Conclusion: This retrospective identification of cases strongly suspected of being related to neurotoxic phycotoxins led ANSES, PCCs and Ifremer to develop a specific questionnaire and to recommend actions to take when neurological symptoms related to shellfish consumption are reported to a PCC. Daily monitoring of shellfish poisoning cases registered in the national PCCs database was also implemented in order to rapidly detect any suspicious cases, alert the competent authorities, and warn the general population.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15563650.2022.2034840DOI Listing

Publication Analysis

Top Keywords

shellfish poisoning
16
neurotoxic phycotoxins
12
2012 2019
12
poisoning cases
12
shellfish
10
cases
8
cases registered
8
french poison
8
poison control
8
control centres
8

Similar Publications

, a dinoflagellate responsible for producing diarrhetic shellfish poisoning (DSP) toxins, poses significant threats to marine ecosystems, aquaculture industries, and human health. DSP toxins, including okadaic acid (OA), dinophysis toxin (DTX), and their diverse derivatives, continue to be identified and characterized. In this study, we report the isolation of four new diol esters of OA/DTX-1 from large-scale cultures of .

View Article and Find Full Text PDF

The development of rapid detection techniques for Alexandrium catenella.

Environ Sci Pollut Res Int

January 2025

College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.

Alexandrium catenella is an important toxic algal species in the Alexandrium genus, which can form toxic red tides in large numbers. The paralytic shellfish poisoning (PSP) produced by Alexandrium catenella can seriously endanger human health and threaten the production and development of the aquaculture and fishery industries. Therefore, it is important to explore and develop effective detection and early warning methods for toxic red tides.

View Article and Find Full Text PDF

Microplastics (MP) are suitable substrates for the colonization of harmful microalgal cells and the adsorption of their lipophilic compounds including phycotoxins. Moreover, such interactions likely change as physical-chemical characteristics of the MP surface are gradually modified during plastic degradation in aquatic environments. Using a combination of innovative laboratory experiments, this study systematically investigated, for the first time, the influence of various MP characteristics (polymeric composition, shape, size, and/or surface roughness) on its capacity to carry both living harmful algal cells and dissolved phycotoxins.

View Article and Find Full Text PDF

OPMS - A web-based ocean pollution monitoring system.

Mar Pollut Bull

January 2025

University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada. Electronic address:

Marine pollution poses significant risks to both marine ecosystems and human health, requiring effective monitoring and control measures. This study presents the Ocean Pollution Monitoring System (OPMS), a web application designed to visualize the seasonal and annual fluctuations of marine pollutants along coastal regions in Canada. The pollutants include fecal coliform and biotoxins such as paralytic shellfish poisoning (PSP), and amnesic shellfish poisoning (ASP).

View Article and Find Full Text PDF
Article Synopsis
  • Minamata disease is a severe neurological disorder caused by methylmercury (MeHg) poisoning, identified in Japan in 1956, and previously thought to be linked to elevated selenium (Se) levels in patients.
  • Research showed both mercury and selenium were present in historical samples from Minamata Bay, indicating that Se also contaminated the area and accumulated in patients' organs.
  • The study's findings, including high Hg/Se molar ratios in brain tissue, help explain the neurological damage seen in patients and emphasize the dangers of consuming MeHg-contaminated seafood.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!