A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Algorithm for wireless sensor networks in ginseng field in precision agriculture. | LitMetric

In the research on energy-efficient networking methods for precision agriculture, a hot topic is the energy issue of sensing nodes for individual wireless sensor networks. The sensing nodes of the wireless sensor network should be enabled to provide better services with limited energy to support wide-range and multi-scenario acquisition and transmission of three-dimensional crop information. Further, the life cycle of the sensing nodes should be maximized under limited energy. The transmission direction and node power consumption are considered, and the forward and high-energy nodes are selected as the preferred cluster heads or data-forwarding nodes. Taking the cropland cultivation of ginseng as the background, we put forward a particle swarm optimization-based networking algorithm for wireless sensor networks with excellent performance. This algorithm can be used for precision agriculture and achieve optimal equipment configuration in a network under limited energy, while ensuring reliable communication in the network. The node scale is configured as 50 to 300 nodes in the range of 500 × 500 m2, and simulated testing is conducted with the LEACH, BCDCP, and ECHERP routing protocols. Compared with the existing LEACH, BCDCP, and ECHERP routing protocols, the proposed networking method can achieve the network lifetime prolongation and mitigate the decreased degree and decreasing trend of the distance between the sensing nodes and center nodes of the sensor network, which results in a longer network life cycle and stronger environment suitability. It is an effective method that improves the sensing node lifetime for a wireless sensor network applied to cropland cultivation of ginseng.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820603PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263401PLOS

Publication Analysis

Top Keywords

wireless sensor
20
sensing nodes
16
sensor networks
12
precision agriculture
12
sensor network
12
limited energy
12
algorithm wireless
8
nodes
8
life cycle
8
cropland cultivation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!