Hepatitis B virus (HBV) is a small hepatotropic DNA virus that replicates via an RNA intermediate. After entry, the virus capsid carries relaxed circular DNA (rcDNA) into the nucleus where the viral genome is converted into covalently closed circular DNA (cccDNA), which serves as the template for all viral transcripts. To monitor cccDNA levels, preprocessing methods to eliminate rcDNA have emerged for quantitative PCR, although Southern blotting is still the only method to discriminate cccDNA from other DNA intermediates. In this study, we have established a robust method for untying mature rcDNA into double stranded linear DNA using specific polymerases. Untying rcDNA provides not only an alternative method for cccDNA quantification but also a sensitive method for visualizing cccDNA. We combined this method with plasmid-safe DNase and T5 exonuclease preprocessing and revealed that accurate quantification requires cccDNA digestion by a restriction enzyme because heat stability of cccDNA increases after T5 exonuclease treatment. In digital PCR using duplex TaqMan probes, fewer than 1000 copies of cccDNA were successfully visualized as double positive spots that were distinct from single positives derived from untied rcDNA. This method was further applied to the infection model of primary hepatocytes treated with nucleoside analogues and a core protein allosteric modulator to monitor cccDNA levels. Relative quantification of cccDNA by human genome copy demonstrated the possibility of precise evaluation of cccDNA level per nucleus. These results clearly indicate that the sequential reaction from untying rcDNA is useful to investigate cccDNA fates in a small fraction of nuclei.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jgv.0.001591 | DOI Listing |
J Neuroinflammation
January 2025
Department of Neurology, Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
Abnormality in transactivating response region DNA binding protein 43 (TDP43) is well-recognized as the pathological hallmark of neurodegenerative diseases. However, the role of TDP43 in neuromyelitis optica spectrum disorder (NMOSD) remains unknown. Here, our observations demonstrate an upregulation of TDP43 in both in vitro and in vivo models of NMOSD, as well as in biological samples from NMOSD patients.
View Article and Find Full Text PDFNature
January 2025
Changping Laboratory, Beijing, The People's Republic of China.
The development of animal models is crucial for studying and treating mitochondrial diseases. Here we optimized adenine and cytosine deaminases to reduce off-target effects on the transcriptome and the mitochondrial genome, improving the accuracy and efficiency of our newly developed mitochondrial base editors (mitoBEs). Using these upgraded mitoBEs (version 2 (v2)), we targeted 70 mouse mitochondrial DNA mutations analogous to human pathogenic variants, establishing a foundation for mitochondrial disease mouse models.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC.
Vibrio parahaemolyticus is pathogenic to both humans and marine animals. Antimicrobial-resistant (AMR) bacteria have been reported to cause mortalities in shrimp, with phage therapy presenting an alternative and eco-friendly biocontrol strategy for controlling bacterial diseases. Therefore, this study aimed to isolate and characterize phages for their applicability in lysing Vibrio parahaemolyticus.
View Article and Find Full Text PDFJ Parasitol
January 2025
Zoology, School of Biological Sciences, Southern Illinois University, Carbondale, Illinois 62901-6501.
The present work includes the description of Gyrinicola pilyolcatzin n. sp. (Nematoda: Oxyurida) collected from the large intestine of tadpoles of the Montezuma frog, Rana montezumae.
View Article and Find Full Text PDFJ Gastroenterol
January 2025
Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Background: Hepatitis B virus (HBV) RNA is an important serum biomarker of hepatic covalently closed circular DNA (cccDNA) transcriptional activity; however, its clinical characteristics remain unclear. This study evaluated the clinical utility of HBV RNA levels in patients with chronic hepatitis B (CHB).
Methods: We studied 87 CHB patients with serum HBV DNA levels ≥ 5.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!