Purpose: To clarify the preventive and therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on brain injury induced by X-ray cranial irradiation, preliminarily identify the mechanism and provide a novel clinical approach for the prevention and treatment of radiation-induced brain injury (RBI).

Materials And Methods: Male C57BL/6 mice were randomly divided into the sham group, large fractionated dose (5 Gy × 4 d) group, large fractionated dose + rTMS (5 Gy × 4 d + rTMS) group, conventional fractionated dose (2 Gy × 10 d) group and conventional fractionated dose + rTMS (2 Gy × 10 d + rTMS) group. After cranial irradiation and rTMS, behavioral experiments, morphological staining and molecular biology experiments were performed. We further determined the mechanism of rTMS on the prevention and treatment of RBI, including changes in hippocampal neuronal apoptosis, neural stem cell (NSC) proliferation and differentiation, and neuronal synaptic plasticity.

Results: rTMS alleviated the negative effects of cranial radiation on the general health of mice and promoted their recovery. rTMS ameliorated the impairment of spatial learning and memory induced by cranial radiation, and this beneficial effect was more robust in the conventional fractionated dose group than the large fractionated dose group. Moreover, rTMS alleviated the alterations in hippocampal structure and neuronal death and had preventive and therapeutic effects against RBI. In addition, rTMS reduced hippocampal cell apoptosis, promoted NSC proliferation and differentiation in the hippocampus after cranial irradiation, and enhanced neuronal synaptic plasticity in the hippocampus. Subsequent studies showed that rTMS upregulated the expression of learning- and memory-related proteins.

Conclusion: rTMS could alleviate learning and memory impairment caused by RBI, and the preventive and therapeutic effects of rTMS were better for the conventional fraction radiation paradigms.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553002.2022.2038806DOI Listing

Publication Analysis

Top Keywords

preventive therapeutic
16
fractionated dose
16
brain injury
12
therapeutic effects
12
cranial irradiation
12
group large
12
large fractionated
12
conventional fractionated
12
rtms
10
repetitive transcranial
8

Similar Publications

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Preventing the progression of cirrhosis to decompensation and death.

Nat Rev Gastroenterol Hepatol

January 2025

Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain.

Two main stages are differentiated in patients with advanced chronic liver disease (ACLD), one compensated (cACLD) with an excellent prognosis, and the other decompensated (dACLD), defined by the appearance of complications (ascites, variceal bleeding and hepatic encephalopathy) and associated with high mortality. Preventing the progression to dACLD might dramatically improve prognosis and reduce the burden of care associated with ACLD. Portal hypertension is a major driver of the transition from cACLD to dACLD, and a portal pressure of ≥10 mmHg defines clinically significant portal hypertension (CSPH) as the threshold from which decompensating events may occur.

View Article and Find Full Text PDF

TNIP1 Impacts Prognosis by Modulating the Immune Microenvironment in BRCA.

Biochem Genet

January 2025

Department of Rheumatology and Immunology, Jingmen People's Hospital, JingChu University of Technology Affiliated Jingmen People's Hospital, No.39 Xiangshan Road Dongbao Zone, Jingmen, 448000, China.

Breast invasive carcinoma (BRCA) affects women worldwide, and despite advancements in diagnosis, prevention, and treatment, outcomes remain suboptimal. TNIP1, a novel target involved in multiple immune signaling pathways, influences tumor development and survival. However, the connection between BRCA and TNIP1 remains unclear.

View Article and Find Full Text PDF

Impact of Weak Vibration Generated by a Refrigerator on Protein Aggregation.

AAPS J

January 2025

Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Protein aggregates and particles in biopharmaceuticals can induce adverse immune responses in patients. Thus, suppression of the formation of protein aggregates and particles is important for the successful development of therapeutic proteins. Mechanical stresses, including agitation, are widely recognized as stress factors that generate protein aggregates and particles.

View Article and Find Full Text PDF

Purpose: Tibial open shaft fractures are very common and susceptible to infection, which can lead to significant morbidity especially infection and non-union. Antibiotic coated nail is one option for fixing open shaft tibial fractures to minimise infection. This study aimed to compare the clinical outcome of Gentamicin-coated tibial nails versus regular unreamed interlocking tibial nails in the treatment of type I and II tibial open fractures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!