Simultaneous measurement of multiple modalities in single-cell analysis, represented by CITE-seq, is a promising approach to link transcriptional changes to cellular phenotype and function, requiring new computational methods to define cellular subtypes and states based on multiple data types. Here, we design a flexible single-cell multimodal analysis framework, called CITEMO, to integrate the transcriptome and antibody-derived tags (ADT) data to capture cell heterogeneity from the multi omics perspective. CITEMO uses Principal Component Analysis (PCA) to obtain a low-dimensional representation of the transcriptome and ADT, respectively, and then employs PCA again to integrate these low-dimensional multimodal data for downstream analysis. To investigate the effectiveness of the CITEMO framework, we apply CITEMO to analyse the cell subtypes of Cord Blood Mononuclear Cells (CBMC) samples. Results show that the CITEMO framework can comprehensively analyse single-cell multimodal samples and accurately identify cell subtypes. Besides, we find some specific immune cells that co-express multiple ADT markers. To better describe the co-expression phenomenon, we introduce the co-expression entropy to measure the heterogeneous distribution of the ADT combinations. To further validate the robustness of the CITEMO framework, we analyse Human Bone Marrow Cell (HBMC) samples and identify different states of the same cell type. CITEMO has an excellent performance in identifying cell subtypes and states for multimodal omics data. We suggest that the flexible design idea of CITEMO can be an inspiration for other single-cell multimodal tasks. The complete source code and dataset of the CITEMO framework can be obtained from https://github.com/studentiz/CITEMO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824218PMC
http://dx.doi.org/10.1080/15476286.2022.2027151DOI Listing

Publication Analysis

Top Keywords

single-cell multimodal
16
citemo framework
16
cell subtypes
12
citemo
10
flexible single-cell
8
multimodal omics
8
analysis framework
8
immune cells
8
subtypes states
8
multimodal
6

Similar Publications

Author Correction: Resolving tissue complexity by multimodal spatial omics modeling with MISO.

Nat Methods

January 2025

Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

View Article and Find Full Text PDF

Systematic dissection of pleiotropic loci and critical regulons in excitatory neurons and microglia relevant to neuropsychiatric and ocular diseases.

Transl Psychiatry

January 2025

Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.

Advancements in single-cell multimodal techniques have greatly enhanced our understanding of disease-relevant loci identified through genome-wide association studies (GWASs). To investigate the biological connections between the eye and brain, we integrated bulk and single-cell multiomic profiles with GWAS summary statistics for eight neuropsychiatric and five ocular diseases. Our analysis uncovered five latent factors explaining 61.

View Article and Find Full Text PDF

scMMAE: masked cross-attention network for single-cell multimodal omics fusion to enhance unimodal omics.

Brief Bioinform

November 2024

Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, Great Bay University, No. 16 Daxue Rd, Songshanhu District, Dongguan, Guangdong, 523000, China.

Multimodal omics provide deeper insight into the biological processes and cellular functions, especially transcriptomics and proteomics. Computational methods have been proposed for the integration of single-cell multimodal omics of transcriptomics and proteomics. However, existing methods primarily concentrate on the alignment of different omics, overlooking the unique information inherent in each omics type.

View Article and Find Full Text PDF

Spatially resolved transcriptomics technologies potentially provide the extra spatial position information and tissue image to better infer spatial cell-cell interactions (CCIs) in processes such as tissue homeostasis, development, and disease progression. However, methods for effectively integrating spatial multimodal data to infer CCIs are still lacking. Here, the authors propose a deep learning method for integrating features through co-convolution, called SpaGraphCCI, to effectively integrate data from different modalities of SRT by projecting gene expression and image feature into a low-dimensional space.

View Article and Find Full Text PDF

Single-cell genomic technologies enable the multimodal profiling of millions of cells across temporal and spatial dimensions. However, experimental limitations hinder the comprehensive measurement of cells under native temporal dynamics and in their native spatial tissue niche. Optimal transport has emerged as a powerful tool to address these constraints and has facilitated the recovery of the original cellular context.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!