Changes in climate can alter the phenology of organisms, potentially decoupling partners within mutualisms. Previous studies have shown that plant and pollinator phenologies are shifting over time, but these shifts have primarily been documented for generalists and within small geographic regions, and the specific climatic cues regulating these shifts are not well understood. We examined phenological shifts in a specialist pollinator and its host plant species over a 117-year study period using a digitized data set of more than 4000 unique collection records. We assessed how climatic cues regulate these organisms' phenologies using PRISM weather data associated with each record. We tested the hypothesis that rates of phenological change would be greater at northern latitudes. We found that the phenology of the specialist bee pollinator Habropoda laboriosa is changing over time, but at different rates across its range. Specifically, phenology is advancing to a greater degree in more northern populations, with increasing phenological advances of 0.04 days/year with each degree of latitude, and with a delay in phenology in more southern populations. In contrast, only one species in the host plant genus Vaccinium is experiencing phenological change over time. For this plant, rates of change are also variable across latitudes, but in a pattern opposite that of the bee; while phenology is advancing across its range, rates of advance are highest in more southern populations, with decreasing phenological advances of 0.01 days/year with each degree of latitude. The phenologies of both the bee and three of four Vaccinium spp. were regulated primarily by spring temperature, with phenologies overall advancing with increasing temperature, and with the strongest responses shown by the bee in northern populations. Our study provides partial support for the hypothesis that phenologies advance most at northern latitudes, but demonstrates that pollinators and plants do not adhere similarly to this prediction. Additionally, we illustrate the potential for phenological mismatch between a specialist pollinator and its host plants by showing that plants and pollinators are advancing their phenologies at different rates across space and time and with differing responses to changing climatic cues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.3658 | DOI Listing |
Sci Rep
January 2025
Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) (CONICET - INTA), Modesta Victoria N°4450, San Carlos de Bariloche, Río Negro, 8400, Argentina.
During the mating season, reproductive individuals of numerous insect species gather in rendezvous areas, which increases mating opportunities. Male hymenopterans often have to move considerable distances during a particular season, searching or waiting for receptive females. Such behavior is likely driven by a complex combination of individual and species-specific traits, environmental influence, and landscape cues.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany.
The cuticle, an extracellular hydrophobic layer impregnated with waxy lipids, serves as the primary interface between plant leaves and their environment and is thus subject to external cues. A previous study on poplar leaves revealed that environmental conditions outdoors promoted the deposition of about 10-fold more cuticular wax compared to the highly artificial climate of a growth chamber. Given that light was the most significant variable distinguishing the two locations, we hypothesized that the quantity of light might serve as a key driver of foliar wax accumulation.
View Article and Find Full Text PDFBiol Lett
January 2025
Department of Forestry and Natural Resources, Purdue University, Forestry Building, 195 Marsteller Street, West Lafayette, IN 47907, USA.
Temperate fishes often spawn in response to environmental cues, such as temperature, thereby facilitating larval emergence concurrent with suitable biotic and abiotic conditions, such as plankton blooms. Climatic changes may alter the reproductive phenology of spring- and autumn-spawning freshwater fish populations. Such effects may depend on the sensitivity of reproductive phenology to ambient temperatures.
View Article and Find Full Text PDFAnn Bot
December 2024
Department of Agronomy, University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
Background And Aims: Fire-released seed dormancy (SD) is a key trait for successful germination and plant persistence in many fire-prone ecosystems. Many local studies have shown that fire-released SD depends on heat and exposure time, dose of smoke-derived compounds, SD class, plant lineage and the fire regime. However, a global quantitative analysis of fire-released SD is lacking.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Biology, University of Oxford, Oxford, United Kingdom.
Previous research indicates that African savanna elephants change their movements preceding or coincident with local rainfall and it has been suggested that they respond to thunder in remote storms-perhaps reading seismic cues. We therefore aimed to test if elephants in Northern Kenya adhere to distinct daytime movement states between the wet and dry periods, and whether their abrupt movement changes precede local wet periods in response to lightning strikes from a specific compass heading. In our study site, lightning to the North and East often preceded local rainfall and could possibly be used to anticipate local wet periods, but local rainfall appears a more likely trigger of behavioural change.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!