A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prognosticating outcome using magnetic resonance imaging in patients with moderate to severe traumatic brain injury: a machine learning approach. | LitMetric

Introduction: Over the last decade advancements in computer processing have enabled the application of machine learning (ML) to complex medical problems. Convolutional neural networks (CNN), a type of ML, have been used to interrogate medical images for variety of purposes. In this study, we aimed to investigate the potential application of CNN in prognosticating patients with traumatic brain injury (TBI).

Methods: Patients with moderate to severe TBI and evidence of diffuse axonal injury (DAI) were selected retrospectively. A CNN model was developed using a training subgroup and a holdout subgroup was used as a testing dataset. We reported the model characteristics including area under the receiver operating characteristic curve (AUC).

Results: We included a total of 38 patient, of which we generated 725 MRI sections. We developed a CNN model based on a modified AlexNet architecture that interpreted the brain stem injury to generate outcome predictions. The model was able to predict GOS outcomes with a specificity of 0.43 and a sensitivity of 0.997. It showed an AUC of 0.917.

Conclusion: The utilization of machine learning MRI analysis for prognosticating patients with TBI is a valued method that require further investigation. This will require multicentre collaboration to generate large datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02699052.2022.2034184DOI Listing

Publication Analysis

Top Keywords

machine learning
12
patients moderate
8
moderate severe
8
traumatic brain
8
brain injury
8
prognosticating patients
8
cnn model
8
prognosticating outcome
4
outcome magnetic
4
magnetic resonance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!