Curcumin is a phytochemical achieved from the plant turmeric. It is extensively utilized for the treatment of several types of diseases such as cancers. Nevertheless, its efficiency has been limited because of rapid metabolism, low bioavailability, poor water solubility, and systemic elimination. Scientists have tried to solve these problems by exploring novel drug delivery systems such as lipid-based nanoparticles (NPs) (e.g., solid lipid NPs, nanostructured lipid carriers, and liposomes), polymeric NPs, micelles, nanogels, cyclodextrin, gold, and mesoporous silica NPs. Among these, liposomes have been the most expansively studied. This review mainly focuses on the different curcumin nanoformulations and their use in cancer therapy in vitro, in vivo, and clinical studies. Despite the development of curcumin-containing NPs for the treatment of cancer, potentially serious side effects, including interactions with other drugs, some toxicity aspects of NPs may occur that require more high-quality investigations to firmly establish the clinical efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ptr.7389DOI Listing

Publication Analysis

Top Keywords

curcumin nanoformulations
8
nps
6
nanoformulations beneficial
4
beneficial nanomedicine
4
nanomedicine cancer
4
cancer curcumin
4
curcumin phytochemical
4
phytochemical achieved
4
achieved plant
4
plant turmeric
4

Similar Publications

Background And Objective: Insulin resistance is a primary feature of type 2 diabetes. This study compared the effects of curcumin and its nanoformulation on insulin resistance, fasting blood sugar, liver function, GLUT4, lipid profile, and oxidative stress in the liver and pancreas in a diabetic model.

Methods: Thirty male Wistar rats were divided into five groups: a control group, a diabetic group, a diabetic group treated with metformin (40 mg/kg), a diabetic group treated with curcumin (100 mg/kg), and a diabetic group treated with curcumin NPs (100 mg/kg).

View Article and Find Full Text PDF

Background: The global demographic shift towards an aging population is generating a rise in neurodegenerative conditions, with Alzheimer's disease (AD) as the most prominent problem. In this landscape, the use of natural supplements has garnered attention for their potential in dementia prevention. Curcumin (Cur), derived from Curcuma longa, has demonstrated promising pharmacological effects against AD by reducing the levels of inflammatory mediators.

View Article and Find Full Text PDF

In degenerative joint disease like osteoarthritis (OA), bioactive compounds like resveratrol, epigallocatechin gallate, curcumin, and other polyphenols often target various signalling pathways, including NFκB, TGFβ, and Wnt/β-catenin by executing epigenetic-modifying activities. Epigenetic modulation can target genes of disease pathophysiology via histone modification, promoter DNA methylation, and non-coding RNA expression, some of which are directly involved in OA but have been less explored. OA patients often seek options that can improve the quality of their life in addition to existing treatment with nonsteroidal anti-inflammatory drugs (NSAIDs).

View Article and Find Full Text PDF

Curcumin-loaded emulsome nanoparticles induces apoptosis through p53 signaling pathway in pancreatic cancer cell line PANC-1.

Toxicol In Vitro

January 2025

Experimental Medicine Research and Application Center, Validebag Research Park, University of Health Sciences, 34662 Istanbul, Uskudar, Türkiye; Molecular Biology and Genetics Department, Hamidiye Institute of Health Sciences, University of Health Sciences, 34668 Istanbul, Uskudar, Türkiye. Electronic address:

Pancreatic cancer is a global health problem with a poor prognosis, limited treatment options and low survival rates of patients. Thus, the exploration of novel treatment approaches is crucial. Curcumin shows promise in pancreatic cancer.

View Article and Find Full Text PDF

Curcumin attenuates smoking and drinking activated NF-κB/IL-6 inflammatory signaling axis in cervical cancer.

Cancer Cell Int

October 2024

Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.

Background: High-risk strains of HPV are known to cause cervical cancer. Multiple clinical studies have emphasized that smoking and drinking are critical risk factors for cervical cancer and its high-grade precursors. In this study, we investigated if smoking and/or drinking augment the molecular mechanisms of cervical carcinogenesis and defined a potential therapeutic approach for their attenuation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!