Association fibers of the human brain have long been considered to exclusively follow an anterior-posterior direction. Using magnetic resonance imaging techniques that allow in-vivo fiber dissection, vertically oriented association fibers have been rediscovered or newly described. Aside from the frontal aslant tract (FAT) in the frontal lobe, the vertical occipital fascicle (VOF) and the vertical portion of the superior longitudinal fascicle system (vSLF) have been studied in recent years. The aim of this review was to give an overview on the current knowledge regarding these two fiber tracts. A review of the available literature in the Medline database was conducted to gather all available publications dealing with either the VOF or the vSLF. One thousand two hundred seventy-three articles were obtained from the literature search of which a total of 71 articles met the final inclusion criteria of this review. We describe the history of the discovery of the respective fiber tract, its anatomical course and its boundaries integrating blunt fiber dissection studies and functional MRI/tractography studies. We discuss the functional properties of the respective fiber tract and its relevance in neurosurgery. The VOF is a fiber tract that has been discovered in the late XIX century and long been forgotten before being rediscovered in the 1970's. It lies lateral to the fibers of the sagittal stratum and mainly connects the superior and inferior occipital lobe. It plays a major role in reading and visual word and language comprehension and is said to be the main link between dorsal and ventral visual streams. The vSLF has many synonyms and is part of the superior longitudinal fascicle system. Recent studies were able to provide more insight into this set of fiber tracts showing distinct connections running from the superior and inferior parietal lobule to the posterior part of the temporal lobe. Its functional role is still not completely cleared. It is said to play a role in visual and auditory semantic language comprehension. It lies directly lateral to the arcuate fascicle. The VOF and the vSLF are vertically oriented fiber tracts connecting the temporo-parieto-occipital region and play a major role in the communication of dorsal and ventral visual streams (VOF), reading (VOF, vSLF) and visual and auditory semantic language comprehension (vSLF). They can consistently be identified using ex vivo blunt dissection techniques and in-vivo fiber tractography. Because of their localization and orientation these two fiber tracts can be combined to a fiber bundle system called posterior transverse system (PTS).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.23736/S0390-5616.21.05368-6 | DOI Listing |
Seizure
December 2024
Department of Radiology, Children's Hospital of Fudan University, No 399 Wanyuan Road, Shanghai 201102, PR China. Electronic address:
Purpose: To complement the current research on altered white matter integrity in children with non-lesional temporal lobe epilepsy (NL-TLE), especially the correlation between diffusion metrics and clinical characteristics, so as to provide imaging evidence for clinical practice.
Methods: Children with temporal lobe epilepsy and no lesions on magnetic resonance imaging (MRI) were retrospectively collected from 2016.01.
Ageing Res Rev
December 2024
Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi, 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710000, China. Electronic address:
Current research primarily focuses on the pathological mechanisms of spinal cord injury (SCI), seeking to promote spinal cord repair and restore motorial and sensory functions by elucidating mechanisms of cell death or axonal regeneration. However, SCI is almost irreversible, and patients often struggle to regain mobility or self-care abilities after injuries. Consequently, there has been significant interest in modulating systemic symptoms following SCI to improve patients' quality of life.
View Article and Find Full Text PDFClin Neurophysiol
December 2024
Department of Clinical Neurophysiology, Vall d'Hebron University Hospital, Passeig de la Vall d'Hebron, 119, 08035 Barcelona, Spain. Electronic address:
Introduction/objective: Biallelic expansion of the pentanucleotide AAGGG in the RFC1- gene is associated with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). This study aimed to comprehensively characterise this condition by conducting an in-depth neurophysiological examination of afflicted patients.
Methods: A retrospective analysis was conducted in 31 RFC1-positive patients.
Hum Brain Mapp
December 2024
Department of Psychology, Northeastern University, Boston, Massachusetts, USA.
Diffusion-weighted imaging (DWI) has been frequently used to examine age-related deterioration of white matter microstructure and its relationship to cognitive decline. However, typical tensor-based analytical approaches are often difficult to interpret due to the challenge of decomposing and (mis)interpreting the impact of crossing fibers within a voxel. We hypothesized that a novel analytical approach capable of resolving fiber-specific changes within each voxel (i.
View Article and Find Full Text PDFJ Anim Sci
December 2024
Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA.
Our objective was to evaluate the effect of a multispecies fungal extract (MFE) on growth performance, apparent total tract digestibility (ATTD), fermentation characteristics, and rumen microbiome composition of beef cattle fed forage-based diets. For experiment 1, ruminally cannulated Angus × SimAngus cows (n = 4; body weight [BW] = 569 ± 21 kg) were used in a randomized crossover design with two 21-d study periods and a 23-d washout period to evaluate the effect of dietary inclusion of a MFE on in situ digestion, ruminal fermentation, and the composition of the rumen microbiome. Treatments consisted of a forage-based diet with or without the inclusion of a MFE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!