Introduction: The current American Joint Committee on Cancer (AJCC) M1a staging of non-small cell lung cancer (NSCLC) encompasses a wide disease spectrum, showing diverse prognosis.

Methods: Patients who diagnosed in an earlier period formed the training cohort, and those who diagnosed thereafter formed the validation cohort. Kaplan-Meier analysis was performed for the training cohort by dividing the M1a stage into three subgroups: (I) malignant pleural effusion (MPE) or malignant pericardial effusion (MPCE); (II) separate tumor nodules in contralateral lung (STCL); and (III) pleural tumor nodules on the ipsilateral lung (PTIL). Gender, age, histologic, N stage, grade, surgery for primary site, lymphadenectomy, M1a groups, and chemotherapy were selected as independent prognostic factors using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. And a nomogram was constructed using Cox hazard regression analysis. Accuracy and clinical practicability were separately tested by Harrell's concordance index, the receiver operating characteristic (ROC) curve, calibration plots, residual plot, the integrated discrimination improvement (IDI), net reclassification improvement (NRI), and decision curve analysis (DCA).

Results: The concordance index (0.661 for the training cohort and 0.688 for the validation cohort) and the area under the ROC curve (training cohort: 0.709 for 1-year and 0.727 for 2-year OS prediction; validation cohort: 0.737 for 1-year and 0.734 for 2-year OS prediction) indicated satisfactory discriminative ability of the nomogram. Calibration curve and DCA presented great prognostic accuracy, and clinical applicability. Its prognostic accuracy preceded the AJCC staging with evaluated NRI (1-year: 0.327; 2-year: 0.302) and IDI (1-year: 0.138; 2-year: 0.130).

Conclusion: Our study established a nomogram for the prediction of 1- and 2-year OS in patients with NSCLC diagnosed with stage M1a, facilitating healthcare workers to accurately evaluate the individual survival of M1a NSCLC patients. The accuracy and clinical applicability of this nomogram were validated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921928PMC
http://dx.doi.org/10.1002/cam4.4560DOI Listing

Publication Analysis

Top Keywords

training cohort
16
validation cohort
12
accuracy clinical
12
non-small cell
8
cell lung
8
lung cancer
8
tumor nodules
8
regression analysis
8
roc curve
8
2-year prediction
8

Similar Publications

Background: High triglyceride (TG) affects and is affected of other hematological factors. The determination of serum fasted triglycerides concentrations, as part of a lipid profile, is crucial key point in hematological factors and significantly affect various systemic diseases. This study was carried out to assess the potential relation between the concentration of TG and hematological factors.

View Article and Find Full Text PDF

Background: Medical narratives are fundamental to the correct identification of a patient's health condition. This is not only because it describes the patient's situation. It also contains relevant information about the patient's context and health state evolution.

View Article and Find Full Text PDF

Risk factors for constipation during pregnancy: a multicentre prospective cohort study.

BMC Pregnancy Childbirth

December 2024

Clinic of Obstetrics and Gynaecology, Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, 03101 Santariskiu Str. 2, LT-08661, Vilnius, Lithuania.

Background: Constipation is frequently encountered in the population of pregnant women. Physical activity and nutritional factors are considered common causes of constipation; however, their impact on this population has not yet been evaluated precisely. This study aimed to assess the prevalence of constipation and its risk factors during pregnancy and postpartum.

View Article and Find Full Text PDF

Longitudinal CT Radiomics to Predict Progression-free Survival in Patients with Locally Advanced Gastric Cancer After Neoadjuvant Chemotherapy.

Acad Radiol

December 2024

Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China (B.W., X.H., Z.Z., Z.L., S.L.). Electronic address:

Rationale And Objectives: To develop and validate a radiomics signature, utilizing baseline and restaging CT, for preoperatively predicting progression-free survival (PFS) after neoadjuvant chemotherapy (NAC) in locally advanced gastric cancer (LAGC).

Methods: A total of 316 patients with LAGC who received NAC followed by gastrectomy were retrospectively included in this single-center study; these patients were split into two cohorts, one for training (n = 243) and the other for validation (n = 73), based on the different districts of our hospital. A total of 1316 radiomics features were extracted from the volume of interest of the gastric-cancer lesion on venous phase CT images.

View Article and Find Full Text PDF

Development and Validation of a Nomogram Based on Multiparametric MRI for Predicting Lymph Node Metastasis in Endometrial Cancer: A Retrospective Cohort Study.

Acad Radiol

December 2024

Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:

Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).

Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!