Neurodegenerative diseases (NDDs) are chronic neurological disorders associated with cognitive or motor dysfunction. As a common spice, Zingiber officinale Roscoe has been used as a medicine to treat a variety of NDDs. However, at the molecular level, the mechanisms of Z. officinale in treating of NDDs have not been deeply investigated. In this study, network pharmacology method, molecular docking, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to predict the mechanisms of Z. officinale in the treatment of NDDs. After a series of biological information analyses, five core targets were obtained, including heme oxygenase 1 (HMOX1), acetylcholinesterase (AChE), nitric oxide synthase (NOS), catechol-O-methyl-transferase (COMT), and metabotropic glutamate receptor 5 (mGluR5). Compounds 75, 68, 46, 67, 69, 49, 66, 50, 34, and 64 were identified as the main components of Z. officinale in the treatment of NDDs. The crucial pathways mainly include neuroactive ligand-receptor signaling pathways, cyclic adenosine monophosphate signaling pathways, dopamine synaptic signaling pathways, and so on. Besides, in vitro experiments by AChE inhibitory activities assay and neuroprotective activities against H O -induced injury in human neuroblastoma SH-SY5Y cells validated the reliability of the results of network analysis. PRACTICAL APPLICATIONS: Zingiber officinale Roscoe is widely used as a traditional spice and herbal medicine. It contains a number of active ingredients, which have shown activities on anti-neurodegenerative diseases (NDDs). In this paper, the potential mechanism of Z. officinale in the treatment of NDDs is explored through network pharmacology, and it was verified by in vitro experiments. The mechanism was not only clarified at the system level but also proved to be effective at the biological level. The results can be used as a reference for Z. officinale in the treating of NDDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfbc.14068 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!