Using small molecule drugs to treat eye diseases carries benefits of specificity, scalability, and transportability, but their efficacy is significantly limited by a fast intraocular clearance rate. Ocular drug implants (ODIs) present a compelling means for the slow and sustained release of small molecule drugs inside the eye. However, methods are needed to inject small molecule ODIs into animals with small eyes, such as mice, which are the primary genetic models for most human ocular diseases. Consequently, it has not been possible to fully investigate efficacy and ocular pharmacokinetics of ODIs. Here, we present a robust, cost-effective, and minimally invasive method called "mouse implant intravitreal injection" (MI3) to deliver ODIs into mouse eyes. This method will expand ODI research to cover the breadth of human eye diseases modeled in mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813043 | PMC |
http://dx.doi.org/10.1016/j.crmeth.2021.100125 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!