Beginning from the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic swept all over the world and is still afflicting the whole global population. Given that the vaccine-manufacturing ability is limited and the virus can evolve quickly, vaccination alone may not be able to end the pandemic, thus developing fast and accurate diagnoses and effective therapeutics will always be unmet needs. Phage display peptide library has been used in screening antigen-specific peptides for the invention of novel mimic receptors/ligands. Here, we report that a 12-mer phage display peptide library has been screened against the SARS-CoV-2 receptor-binding domain (RBD), and five of the screened peptides show binding ability with the RBD protein by the enzyme-linked immune sorbent assay. The surface plasmon resonance assay further demonstrates that peptide no. 1 can specifically bind to SARS-CoV-2 RBD with a binding affinity constant ( ) of 5.8 μM. Transmission electron microscopy coupled with a magnetic bead assay further confirms that the screened peptide can specifically bind the inactivated SARS-CoV-2 virus. This SARS-CoV-2-specific peptide holds great promise as a new bioreceptor/ligand for the rapid and accurate detection of SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8751651 | PMC |
http://dx.doi.org/10.1021/acsomega.1c04873 | DOI Listing |
Nat Commun
January 2025
Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes.
View Article and Find Full Text PDFFood Chem
January 2025
College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China. Electronic address:
Lateral flow immunoassay (LFIA) has the advantages of simplicity and rapidness, and is widely used for the rapid detection of pesticides and other analytes. However, small molecule compounds such as pesticides are often analyzed using competitive LFIA (CLFIA), whose sensitivity often does not meet the actual needs. In this study, a noncompetitive LFIA (NLFIA) for deltamethrin (DM) with high sensitivity was developed by using anti-immunocomplex peptides (AIcPs).
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.
Background: Ecotoxicology is essential for the evaluation and comprehension of the effects of emergency pollutants (EP) such as heavy metal ions on the natural environment. EPs pose a substantial threat to the health of humans and the proper functioning of the global ecosystem. The primary concern is the exposure of humans and animals to heavy metal ions through contaminated water.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Texas A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
Current methods for the macrocyclization of phage-displayed peptides often rely on small molecule linkers that nonspecifically react with targeted amino acid residues. To expand tool kits for more regioselective macrocyclization of phage-displayed peptides, this study explores the unique condensation reaction between an N-terminal cysteine and nitrile along with the reactivity of an internal cysteine. Five 2-cyanopyrimidine derivatives were synthesized for this purpose and evaluated for their selective macrocyclization of a protein-fused model peptide.
View Article and Find Full Text PDFCancer continues to represent a substantial burden in terms of its morbidity and mortality, underscoring the imperative for the development of novel and efficacious treatment modalities. Recent advances in cancer immunotherapy have highlighted the importance of identifying tumour-specific antigens, which can assist the immune system in targeting malignant cells effectively. Phage display technology has emerged as an effective tool for the discovery of novel antigens through cDNA library screening, representing a significant advancement in the field of immunological research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!