Pentatricopeptide repeat (PPR) proteins are RNA-binding proteins that are attractive tools for RNA processing in synthetic biology applications given their modular structure and ease of design. Several distinct types of motifs have been described from natural PPR proteins, but almost all work so far with synthetic PPR proteins has focused on the most widespread P-type motifs. We have investigated synthetic PPR proteins based on tandem repeats of the more compact S-type PPR motif found in plant organellar RNA editing factors and particularly prevalent in the lycophyte . With the aid of a novel plate-based screening method, we show that synthetic S-type PPR proteins are easy to design and bind with high affinity and specificity and are functional in a wide range of pH, salt and temperature conditions. We find that they outperform a synthetic P-type PPR scaffold in many situations. We designed an S-type editing factor to edit an RNA target in and demonstrate that it edits effectively without requiring any additional cofactors to be added to the system. These qualities make S-type PPR scaffolds ideal for developing new RNA processing tools.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809517 | PMC |
http://dx.doi.org/10.1093/synbio/ysab034 | DOI Listing |
Vet Med Sci
January 2025
Chongqing Three Gouges Vocational College, College of Animal Science & Technology, Wanzhou, China.
Peste des petits ruminants virus (PPRV), a single-stranded negative-sense RNA virus with an envelope, belongs to the Morbillivirus in the Paramyxoviridae family and is prevalent worldwide. PPRV infection causes fever, stomatitis, diarrhoea, pneumonia, abortion and other symptoms in small ruminants, with a high mortality rate that poses a significant threat to the sustainability and productivity of the small ruminant livestock sector. The PPRV virus particles have a diameter of approximately 400-500 nm and are composed of six structural proteins: nucleocapsid protein (N), phosphoprotein (P), envelope matrix protein (M), fusion protein (F), haemagglutinin protein (H) and large protein (L).
View Article and Find Full Text PDFBiochemistry
December 2024
Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032, United States.
Plants make pyrimidine base substitutions in organellar mRNAs through the action of sequence-specific nuclear-encoded enzymes. Pentatricopeptide repeat (PPR) proteins are essential for ensuring specificity, while the enzymatic DYW domain is often present at the C-terminus of a PPR protein and dependent on the variant possessing C-to-U and/or U-to-C RNA editing activities. Expression of exogenous DYW-KP variant enzymes in bacteria leads to the modification of RNAs suggestive of U-to-C base changes.
View Article and Find Full Text PDFPlant Commun
December 2024
Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:
Pentatricopeptide repeat (PPR) proteins are involved in nearly all aspects of post-transcriptional processing in plant mitochondria and plastids, where they play a vital role in plant growth, development, cytoplasmic male sterility (CMS) restoration, and response to biotic and abiotic stresses. Through research in the last three decades, PPR functions and the primary mechanisms by which PPR proteins mediate post-transcriptional processing have been uncovered. Here, we aim to summarize the advances in PPR research with highlighting on the mechanisms of how PPR proteins mediate RNA editing, intron splicing, and RNA maturation in the context of their role in organellar gene expression.
View Article and Find Full Text PDFBrain Res
December 2024
Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China. Electronic address:
Delta opioid receptors (DORs) are widely expressed throughout the central nervous system, including the cerebellum, where they play a regulatory role in neurogenesis. In the cerebellar cortex, Purkinje cells (PCs), the sole output neurons, receive glutamatergic synaptic input from parallel fibers (PFs)-the axonal extensions of granule cells-forming PF-PC synapses. However, the precise distribution of DORs within these synapses and their impact on synaptic transmission remain unclear.
View Article and Find Full Text PDFNat Commun
December 2024
Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!