Objective: Mesenchymal stem cells-derived extracellular vesicles (MSCs-EVs) can improve intervertebral disc degeneration (IDD). Considering that, their concrete mechanisms from microRNA-194-5p/tumor receptor-associated factor 6 (miR-194-5p/TRAF6) axis in IDD ask for disclosure in a scientific way.
Methods: Nucleus pulposus (NP) cells and MSCs were obtained. EVs were isolated from the obtained MSCs and identified. miR-194-5p expression in MSC-EVs was altered by sequence transfection. Subsequently, MSCs-EVs were co-cultured with NP cells intervened by tumor necrosis factor α (TNF-α). NP cell proliferation and apoptosis, along with their osteogenic differentiation ability were evaluated. miR-194-5p and TRAF6 expression and their interaction were determined.
Results: In TNF-α-intervened NP cells, miR-194-5p was down-regulated and TRAF6 was up-regulated. Restoring miR-194-5p effectively enhanced proliferation and osteogenic differentiation, and reduced apoptosis of TNF-α-intervened NP cells. miR-194-5p-enriched MSCs-EVs protected TNF-α-intervened NP cells. miR-194-5p targeted TRAF6, TRAF6 overexpression exerted negatively for the growth of TNF-α-intervened NP cells, and could reduce the protective effects of miR-194-5p on TNF-α-intervened NP cells.
Conclusion: It is elucidated that miR-194-5p derived from MSCs-EVs protects TNF-α-intervened NP cells through restricting TRAF6, replenishing a potential target for IDD treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787669 | PMC |
http://dx.doi.org/10.1016/j.reth.2021.12.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!