A large amount of heat energy is required for paddy drying processes to evaporate water from paddy grains. Currently, fossil fuels are being used as an energy source to heat air during the drying process. However, fossil fuels cause air pollution, climate change, and disruption of ecological balance. In this study, to reduce the dependence on fossil fuels for paddy drying, a pilot-scale biomass-assisted recirculating mixed-flow drying system (PSBA-RMFD) for drying paddy was designed, installed, and tested. In this PSBA-RMFD, the heat energy required for heating the drying air was provided only by biomass. The PSBA-RMFD comprises a biomass furnace, drying column, vibratory feeder, bucket elevator, and blower. This study is aimed at evaluating the performance of the PSBA-RMFD with a drying capacity of 400 kg/h. The performance metrics of the PSBA-RMFD were specific energy consumption (SEC), specific thermal energy consumption (STEC), specific moisture evaporation rate (SMER), thermal efficiency of the PSBA-RMFD, exergy efficiency of the drying section, and improvement potential of the dryer. From the experiments conducted in this study, the values of the aforementioned performance parameters were as follows: 0.806-8.656 kW h/kg of water evaporated; 0.385-4.136 kW h/kg of water evaporated; 0.122-1.308 kg of water evaporated/kW h; 7.82-83.99%; 15.28-25.64%; and 858.90-1355.62 W, respectively. The paddy moisture content was reduced from 20.90% wet basis (initial weight of 400 kg) to 13.30% wet basis (final weight of 364 kg) in 270 min, with an average temperature of 78.15°C and average relative humidity of 8.55%. The percentage of biomass energy used in the drying system was approximately 47.77% of the overall energy. In addition, the payback period of the PSBA-RMFD was 1.9 years.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813286 | PMC |
http://dx.doi.org/10.1155/2022/4373292 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
A crude oil aggregation-forming, strictly anaerobic, Gram-stain-positive, spore-forming, rod-shaped, motile and mesophilic bacterium, named strain SH18-2, was isolated from marine sediment near Sado Island in the Sea of Japan. The temperature, salinity and pH ranges of this strain for the growth were 15-40 °C (optimum 35 °C), 0.5-6.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Global Sustainability, University of Maryland, College Park, MD, USA.
In 2025, countries are expected to submit a third round of nationally determined contributions (NDCs) that outline emission reduction goals for 2035. These new NDCs will be important for global alignment with the Paris Agreement's long-term goals. Setting an ambitious and plausible 2035 NDC in the United States (US) could be crucial in motivating high levels of ambition globally.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada.
Spilled plant-based oils behave very differently in comparison to petroleum oils and require different clean-up measures. They do not evaporate, disperse, dissolve, or emulsify to a significant degree but can polymerize and form an impermeable cap on sediment, smothering benthic media and resulting in an immediate impact on the wildlife community. The current study explored the application of rapid up-to-date direct analysis in real time (DART) with high-resolution mass spectrometry for plant-based oil typing.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
China Three Gorges Corporation, Beijing 100038, China.
With the rapid decline in the levelized cost, offshore wind power offers a new option for the clean energy transition of the power sector in China's coastal areas. Here, we develop a power system capacity expansion and operation optimization model to simulate the penetration of offshore wind power in China and quantify the associated health effects. We find that offshore wind power has great potential in mitigating the negative impacts of existing coal-fired power emissions.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Marine Resources Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou 570228, China.
In response to the 2023 "Action Plan for Methane Emission Control" in China, which mandates precise methane (CH) emission accounting, we developed a dynamic model to estimate CH emissions from fossil-fuel and food systems in China for the period 1990-2020. We also analyzed their socioeconomic drivers through the Logarithmic Mean Divisia Index (LMDI) model. Our analysis revealed an accelerated emission increase (850.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!