Do Robotic Tutors Compromise the Social-Emotional Development of Children?

Front Robot AI

School of Communication, Media and IT, Research Group Digital Transformation, Hanze University of Applied Sciences Groningen, Groningen, Netherlands.

Published: January 2022

Social robots are reported to hold great potential for education. However, both scholars and key stakeholders worry about children's social-emotional development being compromised. In aiming to provide new insights into the impact that social robots can have on the social-emotional development of children, the current study interviewed teachers who use social robots in their day-to-day educational practice. The results of our interviews with these experienced teachers indicate that the social robots currently used in education pose little threat to the social-emotional development of children. Children with special needs seem to be more sensitive to social-affective bonding with a robot compared to regular children. This bond seems to have positive effects in enabling them to more easily connect with their human peers and teachers. However, when robots are being introduced more regularly, daily, without the involvement of a human teacher, new issues could arise. For now, given the current state of technology and the way social robots are being applied, other (ethical) issues seem to be more urgent, such as privacy, security and the workload of teachers. Future studies should focus on these issues first, to ensure a safe and effective educational environment for both children and teachers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814517PMC
http://dx.doi.org/10.3389/frobt.2022.734955DOI Listing

Publication Analysis

Top Keywords

social robots
20
social-emotional development
16
development children
8
robots
6
social
5
children
5
teachers
5
robotic tutors
4
tutors compromise
4
social-emotional
4

Similar Publications

New Productive Force: The Preliminary Report of First Craniofacial Surgical Robot IST Multicenter Clinical Trial in China.

J Craniofac Surg

January 2025

Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University.

Background: This paper presents the authors' team's research on a craniofacial surgical robot developed in China. Initiated in 2011 with government funding, the craniofacial surgical robot project was officially launched in Shanghai, developed jointly by the Ninth People's Hospital affiliated with Shanghai Jiao Tong University School of Medicine and the Shanghai Jiao Tong University medical-engineering team. Currently, based on multiple rounds of model surgeries, animal experiments, and clinical trials, our team is applying for approval as a Class III medical device from the National Medical Products Administration (NMPA).

View Article and Find Full Text PDF

High-performance ternary logic circuits and neural networks based on carbon nanotube source-gating transistors.

Sci Adv

January 2025

Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China.

Multi-valued logics (MVLs) offer higher information density, reduced circuit and interconnect complexity, lower power dissipation, and faster speed over conventional binary logic system. Recent advancement in MVL research, particularly with emerging low-dimensional materials, suggests that breakthroughs may be imminent if multistates transistors can be fabricated controllably for large-scale integration. Here, a concept of source-gating transistors (SGTs) is developed and realized using carbon nanotubes (CNTs).

View Article and Find Full Text PDF

The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.

View Article and Find Full Text PDF

This study applied cumulative sum (CUSUM) analysis to evaluate trends in operative time and blood loss, It aims to identify key milestones in mastering extraperitoneal single-site robotic-assisted radical prostatectomy (ss-RARP). A cohort of 100 patients who underwent ss-RARP, performed by a single surgeon at the First Affiliated Hospital of Guangzhou Medical University between March 2021 and June 2023, was retrospectively analyzed. To evaluate the learning curve, the CUSUM (Cumulative Sum Control Chart) technique was applied, revealing the progression and variability over time.

View Article and Find Full Text PDF

Stereotactic radiosurgery (SRS) and radiotherapy (SRT) have gained prominence as both adjuvant and primary treatment options for patients with skull base tumors that are either inoperable or present as residual or recurrent lesions post-surgery. The object of the current study is to evaluate the safety and efficacy of robotic-assisted SRS and SRT across various skull base pathologies. The study was conducted under PRISMA guidelines and involved a comprehensive evaluation of databases, including PubMed, Scopus, Embase, Web-of-Science, and the Cochrane Library.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!