Due to the lack of effective diagnostic markers and therapeutic targets, esophageal squamous cell carcinoma (ESCC) shows a poor 5 years survival rate of less than 30%. To explore the potential therapeutic targets of ESCC, we integrated and reanalyzed the mutation data of WGS (whole genome sequencing) or WES (whole exome sequencing) from a total of 1,145 samples in 7 large ESCC cohorts, including 270 ESCC gene expression data. Two new mutation signatures and 20 driver genes were identified in our study. Among them, , , and were reported for the first time. We also discovered that the was associated with the multiple clinical characteristics of ESCC, and knockdown cells showed enhanced cell migration and cell invasion. Furthermore, a few neoantigens were shared between ESCC patients. For ESCC, compared to TMB, neoantigen might be treated as a better immunotherapy biomarker. Our research expands the understanding of ESCC mutations and helps the identification of ESCC biomarkers, especially for immunotherapy biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814608PMC
http://dx.doi.org/10.3389/fmolb.2021.792779DOI Listing

Publication Analysis

Top Keywords

escc
9
esophageal squamous
8
squamous cell
8
cell carcinoma
8
therapeutic targets
8
integrative genomic
4
genomic analyses
4
analyses 1145
4
1145 patient
4
patient samples
4

Similar Publications

LINC01305 and LAD1 Co-Regulate CTTN and N-WASP Phosphorylation, Mediating Cytoskeletal Reorganization to Promote ESCC Metastasis.

Mol Carcinog

January 2025

Institute of Tissue Engineering and Stem Cells, Beijing Anzhen Nanchong Hospital of Capital Medical University, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.

Esophageal squamous cell carcinoma (ESCC) is prone to metastasis and is a leading cause of mortality. The cytoskeleton is closely related to cell morphology and movement; however, little research has been conducted on ESCC metastasis. In this study, we found that the anchoring filament protein ladinin 1 (LAD1) specifically binds to LINC01305 for co-regulating the level of modulating cortactin proteins (CTTN) and neuronal Wiskott-Aldrich syndrome protein (N-WASP) phosphorylation, which mediates cytoskeletal reorganization and affects the metastasis of ESCC cells.

View Article and Find Full Text PDF

Background: The role of cancer-associated pericytes (CAPs) in tumor microenvironment (TME) suggests that they are potential targets for cancer treatment. The mechanism of CAP heterogeneity in esophageal squamous cell carcinoma (ESCC) remains unclear, which has limited the development of treatments for tumors through CAPs. Therefore, a comprehensive understanding of the classification, function, cellular communication and spatial distribution of CAP subpopulations in ESCC is urgently needed.

View Article and Find Full Text PDF

Introduction: Esophageal squamous cell carcinoma (ESCC) accounts for 80% of esophageal cancer (EC) worldwide. The molecular characteristics of locally advanced ESCC have been extensively studied.

Methods: In this study, we investigate the genomic and transcriptomic characteristics and try to provide the basic T-cell receptors (TCRs) dynamics and its genomic and transcriptome association during the radiochemotherapy of ESCC using multi-omics analysis.

View Article and Find Full Text PDF

Background: Patients suffer from esophageal squamous cell carcinoma (ESCC), which is the ninth highly aggressive malignancy. Tumor-infiltrating immune cells (TIIC) exert as major component of the tumor microenvironment (TME), showing possible prognostic value in ESCC.

Methods: Transcriptome data and scRNA-seq data of ESCC samples were extracted from the GEO and TCGA databases.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) has high mortality. The role and regulatory mechanism of hsa_circ_0021727 (circ_0021727) in ESCC remain largely unknown. This study focused on the undiscovered impact of circ_0021727 on cell cycle progression, apoptosis, and angiogenesis of ESCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!