Ceramides represent a class of biologically active lipids that are involved in orchestrating vital signal transduction pathways responsible for regulating cellular differentiation and proliferation. However, accumulating clinical evidence have shown that ceramides are playing a detrimental role in the pathogenesis of several diseases including cardiovascular disease, type II diabetes and obesity, collectively referred to as cardiometabolic disease. Therefore, it has become necessary to study in depth the role of ceramides in the pathophysiology of such diseases, aiming to tailor more efficient treatment regimens. Furthermore, understanding the contribution of ceramides to the pathological molecular mechanisms of those interrelated conditions may improve not only the therapeutic but also the diagnostic and preventive approaches of the preceding hazardous events. Hence, the purpose of this article is to review currently available evidence on the role of ceramides as a common factor in the pathological mechanisms of cardiometabolic diseases as well as the mechanism of action of the latest ceramides-targeted therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8808480 | PMC |
http://dx.doi.org/10.3389/fcell.2021.816301 | DOI Listing |
Toxicology
January 2025
Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China. Electronic address:
Bisphenol A (BPA) is a typical environmental endocrine disruptor which have been broadly confirmed to be associated with malignant tumors, including colorectal cancer (CRC). Lipid metabolism reprogramming performed important biological effects in cancer progression. While the role of lipid metabolism in CRC progression upon BPA exposure remain elusive.
View Article and Find Full Text PDFRedox Biol
January 2025
Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China. Electronic address:
Adolescent depression is a globally concerned mental health issue, the pathophysiological mechanisms of which remain elusive. Membrane lipids play a crucial role in brain development and function, potentially serving as a crossroad for the abnormalities in neurotransmitters, neuroendocrine, inflammation, oxidative stress, and energy metabolism observed in depressed adolescents. The primary aim of this study was to investigate the erythrocyte membrane lipid profile in adolescent depression.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China. Electronic address:
Chronic ethanol (EtOH) consumption has been widely recognized as a significant contributor to cardiotoxicity. However, no specific treatment is currently available to ameliorate chronic ethanol induced cardiotoxicity. Adiponectin receptor agonist AdipoRon exerts protective effects in multiple organs through alleviating lipotoxicity.
View Article and Find Full Text PDFDue to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
Lipids are intimately associated with skin condition. This review aims to discuss the function of linoleic acid (LA, 18:2, ω-6), an essential fatty acid, in skin health and hair growth. In skin, LA can be metabolized into ω-6 unsaturated fatty acid, oxidized derivatives and incorporated into complex lipid molecules, including ω-hydroxy-ceramides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!