Accumulated evidence shows that the F-box protein 3 (FBXO3) has multiple biological functions, including regulation of immune pathologies, neuropathic diseases and antiviral response. In this review article, we focus on the role of FBXO3 in inflammatory disorders and human malignancies. We also describe the substrates of FBXO3, which contribute to inflammatory disorders and cancers. We highlight that the high expression of FBXO3 is frequently observed in rheumatoid arthritis, leukemia, pituitary adenoma, and oral squamous cell carcinoma. Moreover, we discuss the regulation of FBXO3 by both carcinogens and cancer preventive agents. Our review provides a comprehensive understanding of the role of FBXO3 in various biological systems and elucidates how FBXO3 regulates substrate ubiquitination and degradation during various physiological and pathological processes. Therefore, FBXO3 can be a novel target in the treatment of human diseases including carcinomas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8807484 | PMC |
http://dx.doi.org/10.3389/fcell.2021.802204 | DOI Listing |
Nat Commun
January 2025
School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea.
Lysophagy eliminates damaged lysosomes and is crucial to cellular homeostasis; however, its underlying mechanisms are not entirely understood. We screen a ubiquitination-related compound library and determine that the substrate recognition component of the SCF-type E3 ubiquitin ligase complex, SCF(FBXO3), which is a critical lysophagy regulator. Inhibition of FBXO3 reduces lysophagy and lysophagic flux in response to L-leucyl-L-leucine methyl ester (LLOMe).
View Article and Find Full Text PDFPlant Cell
December 2024
Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA.
Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia.
View Article and Find Full Text PDFJ Proteome Res
November 2024
Stowers Institute for Medical Research, Kansas City, Missouri 64110, United States.
Sin3 is an evolutionarily conserved repressor protein complex mainly associated with histone deacetylase (HDAC) activity. Many proteins are part of Sin3/HDAC complexes, and the function of most of these members remains poorly understood. SAP25, a previously identified Sin3A associated protein of 25 kDa, has been proposed to participate in regulating gene expression programs involved in the immune response but the exact mechanism of this regulation is unclear.
View Article and Find Full Text PDFCell
November 2024
State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Electronic address:
J Neurosci
September 2024
Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
Nerve injury can induce aberrant changes in the spine; these changes are due to, or at least partly governed by, transcription factors that contribute to the genesis of neuropathic allodynia. Here, we showed that spinal nerve ligation (SNL, a clinical neuropathic allodynia model) increased the expression of the transcription factor Tbx5 in the injured dorsal horn in male Sprague Dawley rats. In contrast, blocking this upregulation alleviated SNL-induced mechanical allodynia, and there was no apparent effect on locomotor function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!