Efficient Sorption of Arsenic on Nanostructured Fe-Cu Binary Oxides: Influence of Structure and Crystallinity.

Front Chem

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, School of Environmental Science and Engineering, Ministry of Education, Guangzhou University, Guangzhou, China.

Published: January 2022

To study the structure-performance relationship, a series of nanostructured Fe-Cu binary oxides (FCBOs) were prepared by varying synthesis conditions. The obtained binary oxides were well characterized using X-ray diffraction (XRD), transmission electron microscope (TEM), Brunner-Emmet-Teller (BET), magnetic and Zeta potential measurement techniques. Both As(V) and As(III) sorption on the FCBOs were evaluated by batch tests. Results show that the surface structure and crystallinity of FCBOs are greatly dependent on preparation conditions. The crystallinity of FCBOs gradually increases as the synthesis pH value increasing from 9.0 to 13.0, from amorphous phase to well-crystalline one. Simultaneously, the morphology change of FCBOs from irregular agglomerate to relatively uniform polyhedron has been observed. The sorption of arsenic is greatly influenced by the crystallinity and structure of FCBOs, decreasing with increasing degree of crystallinity. The amorphous FCBO has higher surface hydroxyl density than well-crystalline one, which might be the reason of higher sorption performance. As(V) is sorbed by the FCBOs via formation of inner-sphere surface complexes and As(III) is sorbed through formation of both inner- and outer-sphere surface complexes. This investigation provides new insights into structure-performance relationship of the FCBO system, which are beneficial to develop new and efficient sorbents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811158PMC
http://dx.doi.org/10.3389/fchem.2021.840446DOI Listing

Publication Analysis

Top Keywords

binary oxides
12
sorption arsenic
8
nanostructured fe-cu
8
fe-cu binary
8
structure crystallinity
8
structure-performance relationship
8
crystallinity fcbos
8
surface complexes
8
fcbos
7
crystallinity
5

Similar Publications

Pyrrolnitrin, a potent antifungal compound originally discovered in Pseudomonas strains, is biosynthesized through a secondary metabolic pathway involving four key enzymes. Central to this process is PrnB, a heme enzyme that catalyzes the complex transformation of 7-Cl-L-tryptophan. Despite its structural similarity to indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) and its classification within the histidine-ligated heme-dependent aromatic oxygenase (HDAO) superfamily, PrnB has remained relatively unexplored due to challenges in reconstituting its in vitro activity.

View Article and Find Full Text PDF

In this study, kapok fiber (KF) a hollow and hydrophobic fiber, was modified with cetyltrimethylammonium bromide (CTAB) or cetylpyridinium chloride (CPC), rendering adsorbed amount of ∼0.75 × 10 mol/g. Small-angle X-ray scattering (SAXS) measurements of dry KF/CTAB and KF/CPC evidenced a periodic distance of ∼2.

View Article and Find Full Text PDF

A stoichiometric cubic phase of zinc bismuth oxide ZnBiO (ZBO) is introduced as an anode for rechargeable Na-ion batteries. ZBO is synthesized using a coprecipitation method and characterized by various physicochemical techniques. Pristine ZBO shows a high cyclability in an ether-based electrolyte due to the formation of a robust interphase coupled with high Na conductivity.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the accuracy of laser fluorescence (LF) readings in detection of caries removal by various techniques (CRTs).

Methods: A hundred and eighty extracted human molar teeth included in the study which were scored 3, 4, and 5 according to ICDAS. Each score group was randomly assigned to 4 subgroups according to CRT including ceramic bur (Group A), carbide bur (Group B), carbide bur with alumina abrasion (Group C), and carbide bur with bioactive glass (BAG) abrasion (Group D) (n = 15 for each group).

View Article and Find Full Text PDF

Suboxides and subselenides: intermediate reaction products to form GaO, GaSe, InO, InSe, SnO, and SnSe during molecular-beam epitaxy.

Phys Chem Chem Phys

December 2024

Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

The molecular-beam epitaxial (MBE) growth of III-O and IV-O materials (, GaO, InO, and SnO) is known to be reaction-limited by complex 2-step kinetics and the desorption of volatile suboxides (, GaO, InO, SnO). We find that the different surface reactivities of suboxides and respective elements (, Ga, In, Sn) with active oxygen define the film-growth-windows (FGWs) and suboxide-formation-windows (SFWs) of III-O and IV-O materials, respectively. To generalize, we provide elementary reaction pathways and respective Gibbs energies to form binary III-O, III-Se, IV-O, and IV-Se ground-states as well as their subcompounds during their MBE growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!