A Novel 2-Carbon-Linked Dimeric Artemisinin With Potent Antileukemic Activity and Favorable Pharmacology.

Front Oncol

Center for Stem Cell Biology & Regenerative Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Departments of Pediatrics and Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States.

Published: January 2022

Acute myeloid leukemia (AML) remains a devastating disease, with low cure rates despite intensive standard chemotherapy regimens. In the past decade, targeted antileukemic drugs have emerged from research efforts. Nevertheless, targeted therapies are often effective for only a subset of patients whose leukemias harbor a distinct mutational or gene expression profile and provide only transient antileukemic responses as monotherapies. We previously presented single agent and combination preclinical data for a novel 3-carbon-linked artemisinin-derived dimer (3C-ART), diphenylphosphate analog 838 (ART838), that indicates a promising approach to treat AML, given its demonstrated synergy with targeted antileukemic drugs and large therapeutic window. We now report new data from our initial evaluation of a structurally distinct class of 2-carbon-linked dimeric artemisinin-derived analogs (2C-ARTs) with prior documented antimalarial activity. These 2C-ARTs have antileukemic activity at low (nM) concentrations, have similar cooperativity with other antineoplastic drugs and comparable physicochemical properties to ART838, and provide a viable path to clinical development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811960PMC
http://dx.doi.org/10.3389/fonc.2021.790037DOI Listing

Publication Analysis

Top Keywords

2-carbon-linked dimeric
8
antileukemic activity
8
targeted antileukemic
8
antileukemic drugs
8
antileukemic
5
novel 2-carbon-linked
4
dimeric artemisinin
4
artemisinin potent
4
potent antileukemic
4
activity favorable
4

Similar Publications

ART714 is a best-in-class antileukemic 2-carbon-linked dimeric artemisinin derivative.

Cancer Chemother Pharmacol

July 2023

Departments of Pediatrics and Physiology, School of Medicine, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, BRB14-021, 655 W Baltimore St, Baltimore, MD, 21201, USA.

Purpose: It has become increasingly clear that new multiagent combination regimens are required to improve survival rates in acute myeloid leukemia (AML). We recently reported that ART631, a first-in-class 2-carbon-linked artemisinin-derived dimer (2C-ART), was not only efficacious as a component of a novel three-drug combination regimen to treat AML, but, like other synthetic artemisinin derivatives, demonstrated low clinical toxicity. However, we ultimately found ART631 to have suboptimal solubility and stability properties, thus limiting its potential for clinical development.

View Article and Find Full Text PDF

A Novel 2-Carbon-Linked Dimeric Artemisinin With Potent Antileukemic Activity and Favorable Pharmacology.

Front Oncol

January 2022

Center for Stem Cell Biology & Regenerative Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Departments of Pediatrics and Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States.

Acute myeloid leukemia (AML) remains a devastating disease, with low cure rates despite intensive standard chemotherapy regimens. In the past decade, targeted antileukemic drugs have emerged from research efforts. Nevertheless, targeted therapies are often effective for only a subset of patients whose leukemias harbor a distinct mutational or gene expression profile and provide only transient antileukemic responses as monotherapies.

View Article and Find Full Text PDF

Antimalarial chemotherapy: artemisinin-derived dimer carbonates and thiocarbonates.

Bioorg Med Chem Lett

June 2014

Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States. Electronic address:

Several 2-carbon-linked trioxane dimer secondary alcohol carbonates 14 and thiocarbonates 15, combined with mefloquine and administered in a low single oral dose, prolonged the survival times of malaria-infected mice much more effectively than the popular monomeric antimalarial drug artemether plus mefloquine. Three dimer carbonates 14 and one dimer thiocarbonate 15 partially cured malaria-infected mice.

View Article and Find Full Text PDF

The survival times of malaria-infected mice are prolonged more by several new two-carbon-linked artemisinin-derived dimer carbamates than by the trioxane antimalarial drug artemether.

Bioorg Med Chem Lett

March 2014

Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States. Electronic address:

Sixteen new artemisinin-derived 2-carbon-linked trioxane dimers were prepared to study chemical structure/antimalarial activity relationships (SAR). Administering a very low single oral dose of only 5mg/kg of dimer secondary alcohol 6a or 6b plus 15 mg/kg of mefloquine hydrochloride prolonged the lives of Plasmodium berghei-infected mice to an average of 25 days after infection. This ACT chemotherapy result is of high medicinal significance because the antimalarial efficacy of the popular trioxane drug artemether (2) plus mefloquine under the same conditions was significantly lower (only 20 day average survival).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!