The immune checkpoint blockade therapy has profoundly revolutionized the field of cancer immunotherapy. However, despite great promise for a variety of cancers, the efficacy of immune checkpoint inhibitors is still low in colorectal cancer (CRC). This is mainly due to the immunosuppressive feature of the tumor microenvironment (TME). Emerging evidence reveals that certain chemotherapeutic drugs induce immunogenic cell death (ICD), demonstrating great potential for remodeling the immunosuppressive TME. In this study, the potential of ginsenoside Rg3 (Rg3) as an ICD inducer against CRC cells was confirmed using and experimental approaches. The ICD efficacy of Rg3 could be significantly enhanced by quercetin (QTN) that elicited reactive oxygen species (ROS). To ameliorate delivery barriers associated with chemotherapeutic drugs, a folate (FA)-targeted polyethylene glycol (PEG)-modified amphiphilic cyclodextrin nanoparticle (NP) was developed for co-encapsulation of Rg3 and QTN. The resultant nanoformulation (CD-PEG-FA.Rg3.QTN) significantly prolonged blood circulation and enhanced tumor targeting in an orthotopic CRC mouse model, resulting in the conversion of immunosuppressive TME. Furthermore, the CD-PEG-FA.Rg3.QTN achieved significantly longer survival of animals in combination with Anti-PD-L1. The study provides a promising strategy for the treatment of CRC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799998PMC
http://dx.doi.org/10.1016/j.apsb.2021.06.005DOI Listing

Publication Analysis

Top Keywords

ginsenoside rg3
8
colorectal cancer
8
immune checkpoint
8
chemotherapeutic drugs
8
immunosuppressive tme
8
rg3
5
cyclodextrin-based nanoformulation
4
nanoformulation achieves
4
achieves co-delivery
4
co-delivery ginsenoside
4

Similar Publications

This study investigates the synergistic inhibitory effects of combining the stimulator of interferon genes (STING) agonist cyclic diadenylate monophosphate (c-di-AMP) and ginsenoside RG3 on cisplatin (DDP)-resistant gastric cancer (GC) cells. The objective is to identify novel therapeutic targets and offers insights for the clinical management of DDP resistance. Various techniques were employed, including western blot, MTT assay, colony formation assay, scratch assay, transwell assay, tubule formation assay, flow cytometry, Hoechst 33342 fluorescence staining, and in vivo experiments, to investigate the potential mechanisms and effects of the combined application of the STING agonist and ginsenoside RG3 in reversing cisplatin resistance in gastric cancer.

View Article and Find Full Text PDF

Osteoporosis is mainly caused by an imbalance in osteoclast and osteoblast regulation, resulting in an imbalance in bone homeostasis. Ginsenoside Rg3 (Rg3) has been reported to have a therapeutic effect on alleviating osteoporosis. Nonetheless, the underlying mechanisms have not been completely elucidated.

View Article and Find Full Text PDF

Cancer is one of the most devastating illnesses in the world, impacting millions of individuals every year. Despite various therapies, the final effect is unsatisfactory. Chemotherapy currently dominates as the primary option of treatment.

View Article and Find Full Text PDF

Targeting cardiolipin metabolism for Parkinson's disease therapy.

Metabol Open

December 2024

Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece.

View Article and Find Full Text PDF

The formation of inclusion complexes between Ginsenoside Rg3 and cyclodextrins represents a promising strategy to enhance the solubility of G-Rg3. Nevertheless, the molecular mechanisms underlying the interaction between G-Rg3 and cyclodextrins have yet to be fully elucidated. In this study, we employed a combination of molecular simulation and experimental methodologies to identify the most effective solubilizing carriers among G-Rg3, β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), and 2,6-dimethyl-β-cyclodextrin (DM-β-CD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!