Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: an ascomycete pathogen causes red rot of sugarcane which is specialized to infect cane stalks. Cellulolytic and pectinolytic enzymes are necessary for degradation of plant cell wall which stands as barrier for successful fungal pathogenesis. In the study, we have confined to the CAZy genes that regulate cellulolytic and pectinolytic enzymes in two distinctive pathotypes of Comparative transcriptome analysis revealed that a number of CAZy genes producing cellulolytic and pectinolytic enzyme were present in the virulent (671) and least virulent (RoC) pathotypes. Two consecutive transcriptome analyses (in vitro) were performed using Illumina Hi Seq 2500, further analysis was done with various bioinformatic tools. In vitro expression analysis of cutinase, glycoside hydrolyase and pectin-related genes revealed number of genes that attributes virulence. Numerous pectin-related genes involved in degradation of plant cell wall, pectinase and pectin lyase are considered to be key precursor in degradation of pectin in sugarcane. These results suggest that cellulolytic enzymes, cutinase and pectin-related genes are essential for degradation of sugarcane cell wall and considered to be an important pathogenic factor in This is the first detailed report on sugarcane cell wall-degrading enzymes during its interaction with and also this comparative transcriptome analysis provided more insights into pathogen mechanism on .
Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03113-6.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787009 | PMC |
http://dx.doi.org/10.1007/s13205-022-03113-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!