Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Fractional nonlinear models have been widely used in the research of nonlinear science. A fractional nonlinear Schrödinger equation with distributed coefficients is considered to describe the propagation of pi-second pulses in inhomogeneous fiber systems. However, soliton molecules based on the fractional nonlinear Schrödinger equation are hardly reported although many fractional soliton structures have been studied.
Objectives: This paper discusses the propagation and interaction between special fractional soliton and soliton molecules based on analytical solutions of a fractional nonlinear Schrödinger equation.
Methods: Two analytical methods, including the variable-coefficient fractional mapping method and Hirota method with the modified Riemann-Liouville fractional derivative rule, are used to obtain analytical non-travelling wave solutions and multi-soliton approximate solutions.
Results: Analytical non-travelling wave solutions and multi-soliton approximate solutions are derived. The form conditions of soliton molecules are given, and the dynamical characteristics and interactions between special fractional solitons, multi-solitons and soliton molecules are discussed in the periodic inhomogeneous fiber and the exponential dispersion decreasing fiber.
Conclusion: Analytical chirp-free and chirped non-traveling wave solutions and multi-soliton approximate solutions including soliton molecules are obtained. Based on these solutions, dynamical characteristics and interactions between special fractional solitons, multi-solitons and soliton molecules are discussed. These theoretical studies are of great help to understand the propagation of optical pulses in fibers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800015 | PMC |
http://dx.doi.org/10.1016/j.jare.2021.05.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!