Current theory holds that the intensity of biotic interactions decreases with increases in latitude and elevation; however, empirical data demonstrate great variation in the direction, strength, and shape of elevational changes in herbivory. The latitudinal position of mountains may be one important source of this variation, but the acute shortage of data from polar mountains hampers exploration of latitude effects on elevational changes in herbivory. Here, we reduce this knowledge gap by exploring six elevation gradients located in three Arctic mountain ranges to test the prediction that a decrease in herbivory occurs with increasing elevation from forest to alpine tundra. Across the 10 most abundant evergreen and deciduous woody plant species, relative losses of foliage to insect herbivores were 2.2-fold greater at the highest elevations (alpine tundra) than in mid-elevation birch woodlands or low-elevation coniferous forests. Plant quality for herbivores (quantified by specific leaf area) significantly decreased with elevation across all studied species, indicating that bottom-up factors were unlikely to shape the observed pattern in herbivory. An experiment with open-top chambers established at different elevations showed that even a slight increase in ambient temperature enhances herbivory in Arctic mountains. Therefore, we suggest that the discovered increase in herbivory with elevation is explained by higher temperatures at the soil surface in open habitats above the tree line compared with forests at lower elevations. This explanation is supported by the significant difference in elevational changes in herbivory between low and tall plants: herbivory on low shrubs increased fourfold from forest to alpine sites, while herbivory on trees and tall shrubs did not change with elevation. We suggest that an increase in herbivory with an increase in elevation is typical for high-latitude mountains, where inverse temperature gradients, especially at the soil surface, are common. Verification of this hypothesis requires further studies of elevational patterns in herbivory at high latitudes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796911 | PMC |
http://dx.doi.org/10.1002/ece3.8537 | DOI Listing |
Sci Rep
January 2025
Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10‑727, Olsztyn, Poland.
The liverwort Arnellia fennica has a circumarctic distribution with disjunct and scarce localities in the Alps, Carpathians, and Pyrenees. Within the Carpathians, it is only known from the Tatra Mountains (in Poland), where so far only four occurrences have been documented in the forest belt of the limestone part of the Western Tatras. The species is considered a tertiary relict, which owes its survival during the last glaciation period to low-lying locations in areas not covered by ice.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Slovak Hydrometeorological Institute, Jeséniova 17, Bratislava, 833 15, Slovakia.
This study focused on testing the response of the assimilation apparatus of evergreen Pinaceae species to increasing levels of oxidative stress simulated in manipulative experiments. Needles were collected from mature individuals of Pinus mugo, Pinus cembra, Pinus sylvestris, Abies alba, and Picea abies at the foothill (FH) and alpine treeline ecotone (ATE) in the High Tatras (Western Carpathians). The injury index (INX), quantified by the modified electrolyte leakage (EL) method, indicated severe needle damage due to exposure to extremely high levels of O.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2025
Faculty of Geosciences and the Environment, Institute of Geography and Sustainability, University of Lausanne, Lausanne 1015, Switzerland.
Adaptation to climate change is a social-ecological process: it is not solely a result of natural processes or human decisions but emerges from multiple relations within social systems, within ecological systems and between them. We propose a novel analytical framework to evaluate social-ecological relations in nature-based adaptation, encompassing social (people-people), ecological (nature-nature) and social-ecological (people-nature) relations. Applying this framework to 25 case studies, we analyse the associations among these relations and identify archetypes of social-ecological adaptation.
View Article and Find Full Text PDFPLoS One
January 2025
University of Washington Herbarium (WTU), Burke Museum, Seattle, Washington, United States of America.
Alpine areas are host to diverse plant communities that support ecosystems through structural and floral resources and persist through specialized adaptations to harsh high-elevation conditions. An ongoing question in these plant communities is whether composition is shaped by stochastic processes (e.g.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
Freezing temperatures impose significant constraints on plant growth and productivity. While cold tolerance mechanisms have been extensively studied in model species, the molecular basis of freezing tolerance in naturally adapted plants remains underexplored. , an alpine plant with a strong freezing tolerance, provides a valuable model for investigating these adaptive mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!