Multivalent interactions between amino acid residues of intrinsically disordered proteins (IDPs) drive phase separation of these proteins into liquid condensates, forming various membrane-less organelles in cells. These interactions between often biased residues of IDPs are also likely involved in selective recruitment of many other IDPs into condensates. However, determining factors for this IDP recruitment into protein condensates are not understood yet. Here, we quantitatively examined recruitment tendencies of various IDPs with different sequence compositions into IDP-clustered condensates both as well as in cells. Condensate-forming IDP scaffolds, recruited IDP clients, and phase separation conditions were carefully varied to find key factors for selective IDP partitioning in protein condensates. Regardless of scaffold sequences, charged residues in client IDPs assured potent IDP recruitment, likely strong electrostatic interactions, where positive residues could further enhance recruitment, possibly with cation-pi interactions. Notably, poly-ethylene glycol, a widely used crowding reagent for phase separation, abnormally increased IDP recruitment, indicating the need for careful use of crowding conditions. Tyrosines of IDP clients also strongly participated in recruitment both and in cells. Lastly, we measured recruitment degrees by more conventional interactions between folded proteins instead of disordered proteins. Surprisingly, recruitment forces by an even moderate protein interaction ( ∼ 5 μM) were substantially stronger than those by natural IDP-IDP interactions. The present data offer valuable information on how cells might organize protein partitioning on various protein condensates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8729795 | PMC |
http://dx.doi.org/10.1039/d1sc05672g | DOI Listing |
PRX Life
June 2024
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
Biomolecular condensates are dynamic intracellular entities defined by their sequence- and composition-encoded material properties. During aging, these properties can change dramatically, potentially leading to pathological solidlike states, the mechanisms of which remain poorly understood. Recent experiments reveal that the aging of condensates involves a complex interplay of solvent depletion, strengthening of sticker links, and the formation of rigid structural segments such as beta fibrils.
View Article and Find Full Text PDFImmunohorizons
January 2025
Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Antibody (Ab) crosslinking of HLA class II (HLA II) molecules on the surface of endothelial cells (ECs) triggers proliferative and prosurvival intracellular signaling, which are implicated in promoting chronic Ab-mediated rejection (cAMR). Despite the importance of cAMR in transplant medicine, the mechanisms involved remain incompletely understood. Here, we examined the regulation of yes-associated protein (YAP) nuclear cytoplasmic localization and phosphorylation in human ECs challenged with Abs that bind HLA II, which are strongly associated with cAMR.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, South Korea.
This study proposes fluorenylmethoxycarbonyl (Fmoc)-protected single amino acids (Fmoc-AAs) as a minimalistic model system to investigate liquid-liquid phase separation (LLPS) and the elusive liquid-to-solid transition of condensates. We demonstrated that Fmoc-AAs exhibit LLPS depending on the pH and ionic strength, primarily driven by hydrophobic interactions. Systematic examination of the conditions under which each Fmoc-AA undergoes LLPS revealed distinct residue-dependent trends in the critical concentrations and phase behavior.
View Article and Find Full Text PDFNat Commun
January 2025
Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
Recalcitrant bacterial infections can be caused by various types of dormant bacteria, including persisters and viable but nonculturable (VBNC) cells. Despite their clinical importance, we know fairly little about bacterial dormancy development and recovery. Previously, we established a correlation between protein aggregation and dormancy in Escherichia coli.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601 Anhui, China. Electronic address:
Microbial compartment provides a promising approach for achieving high-valued chemical biosynthesis from renewable feedstock. However, volatile precursor could be utilized by pathway enzyme, which may hinder and adverse the cascade catalysis within microbial cell factory. Here, a customizable compartment was developed for pathway sequestration using spatially assembled cascade catalysis reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!