The classic and most widely used co-reactant electrochemiluminescence (ECL) reaction of tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)]) and tri--propylamine is enhanced by an order of magnitude by -[Ir(sppy)] (where sppy = 5'-sulfo-2-phenylpyridinato- ,), through a novel 'redox mediator' pathway. Moreover, the concomitant green emission of [Ir(sppy)]* enables internal standardisation of the co-reactant ECL of [Ru(bpy)]. This can be applied using a digital camera as the photodetector by exploiting the ratio of R and B values of the RGB colour data, providing superior sensitivity and precision for the development of low-cost, portable ECL-based analytical devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8729815 | PMC |
http://dx.doi.org/10.1039/d1sc05609c | DOI Listing |
Nanomaterials (Basel)
December 2024
Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
Our group has synthesized a pleiotropic synthetic nanozyme redox mediator we term a "pleozyme" that displays multiple enzymatic characteristics, including acting as a superoxide dismutase mimetic, oxidizing NADH to NAD, and oxidizing HS to polysulfides and thiosulfate. Benefits have been seen in acute and chronic neurological disease models. The molecule is sourced from coconut-derived activated charcoal that has undergone harsh oxidization with fuming nitric acid, which alters the structure and chemical characteristics, yielding 3-8 nm discs with broad redox potential.
View Article and Find Full Text PDFSci Total Environ
December 2024
College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China.
Existing researches involving accelerated interspecies electron transfer (IET) by solid redox mediators focus mainly on the conductive nature of these materials. Although non-conductive solid redox mediator-humin has been reported to promote methanogenic performance of anaerobic granular sludge, likely through accelerating IET of microorganisms, this phenomenon has not been validly proven. In this study, a wetland sediment sourced HM (HM) was added into a co-culture of a syntrophic bacteria Shewanella oneidensis MR-1 and an archaeal Methanosarcina barkeri with ethanol as sole electron donor to examine whether HM can accelerate the IET between these two species.
View Article and Find Full Text PDFWater Res
December 2024
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
Reducing the C/N ratio requirements for heterotrophic nitrification-aerobic denitrification (HNAD) is crucial for its practical application; however, it remains underexplored. In this study, a highly efficient HNAD bacterium, Paracoccus denitrificans XW11, was isolated. The HNAD characteristics of XW11 were studied, and the redox mediator fulvic acid (FA) was used to reduce the C/N requirements.
View Article and Find Full Text PDFPlant Physiol Biochem
October 2024
Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
-Action potential (AP) of excitable plant cells is an important signaling event that can differentially alter physicochemical and physiological processes in various parts of the same cell. In giant cells of characean algae, the AP propagation has minor effect on photosynthetic electron transport in areas with high activity of plasmalemmal H-pump but inhibits linear electron flow in regions featuring high passive H/OH conductance of the plasma membrane (PM). Uneven spatial distributions of local periplasmic and cytoplasmic pH facilitate the operation of distinct (CO-dependent and O-mediated) pathways of photoinduced electron flow, which presumably accounts for differential influence of AP on photosynthesis.
View Article and Find Full Text PDFBioresour Technol
November 2024
State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!