AI Article Synopsis

  • Fatty acid oxidation defects (FAOD) and urea cycle defects (UCD) are common metabolic liver diseases that require tailored management strategies based on their type and severity.
  • In FAOD, the main focus is on preventing hypoglycemia to avoid triggering fatty acid oxidation, and management may involve carnitine supplementation and dietary changes.
  • For UCD, the goal is to manage protein intake and avoid hyperammonemia while ensuring nutrient sufficiency, requiring a comprehensive approach including a multi-disciplinary team for optimal patient care.

Article Abstract

Fatty acid oxidation defects (FAOD) and urea cycle defects (UCD) are among the most common metabolic liver diseases. Management of these disorders is dotted with challenges as the strategies differ based on the type and severity of the defect. In those with FAOD the cornerstone of management is avoiding hypoglycemia which in turn prevents the triggering of fatty acid oxidation. In this review, we discuss the role of carnitine supplementation, dietary interventions, newer therapies like triheptanoin, long-term treatment and approach to positive newborn screening. In UCD the general goal is to avoid excessive protein intake and indigenous protein breakdown. However, one size does not fit all and striking the right balance between avoiding hyperammonemia and preventing deficiencies of essential nutrients is a formidable task. Practical issues during the acute presentation including differential diagnosis of hyperammonemia, dietary dilemmas, the role of liver transplantation, management of the asymptomatic individual and monitoring are described in detail. A multi-disciplinary team consisting of hepatologists, metabolic specialists and dieticians is required for optimum management and improvement in quality of life for these patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790400PMC
http://dx.doi.org/10.4254/wjh.v14.i1.180DOI Listing

Publication Analysis

Top Keywords

fatty acid
12
acid oxidation
12
oxidation defects
8
urea cycle
8
cycle defects
8
management
5
mitochondrial hepatopathy
4
hepatopathy anticipated
4
anticipated difficulties
4
difficulties management
4

Similar Publications

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.

View Article and Find Full Text PDF

Biogenesis of membrane-bound organelles involves the synthesis, remodeling, and degradation of their constituent phospholipids. How these pathways regulate organelle size remains poorly understood. Here we demonstrate that a lipid-degradation pathway inhibits expansion of the endoplasmic reticulum (ER) membrane.

View Article and Find Full Text PDF

Limnobacter olei sp. nov., a Novel Diesel-Degrading Bacterium Isolated from Oil-Contaminated Soil.

Curr Microbiol

January 2025

Jiangsu Longhuan Environmental Science Co. LTD, Changzhou, 213164, China.

A bacterial strain P1, capable of degrading diesel and converting thiosulfate to sulfate was isolated from an oil-contaminated soil sample. The cells were Gram-stain-negative, slightly curved rods and motile with a single polar flagellum. Growth of the strain was observed at 4-45 °C (optimum at 28 °C), at pH 4.

View Article and Find Full Text PDF

Edible Berries-An Update on Nutritional Composition and Health Benefits-Part II.

Curr Nutr Rep

January 2025

Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.

Purpose Of Review: Berries are a great source of fiber, polyunsaturated fatty acids, and beneficial secondary metabolites (polyphenols). Various phytochemicals present in berries (glycosidic-linked flavonoids, anthocyanins, etc.) provide potential health benefits to consumers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!